【題目】如圖,已知Rt△ABC中,∠ABC=90°,先把△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,再把△ABC沿射線平移至△FEG,DE、FG相交于點H.
(1)判斷線段DE、FG的位置關(guān)系,并說明理由;
(2)連結(jié)CG,求證:四邊形CBEG是正方形.
【答案】見解析
【解析】試題分析: (1)根據(jù)旋轉(zhuǎn)和平移可得∠DEB=∠ACB,∠GFE=∠A,再根據(jù)∠ABC=90°可得∠A+∠ACB=90°,進而得到∠DEB+∠GFE=90°,從而得到DE、FG的位置關(guān)系是垂直;(2)根據(jù)旋轉(zhuǎn)和平移找出對應(yīng)線段和角,然后再證明是矩形,后根據(jù)鄰邊相等可得四邊形CBEG是正方形.
試題解析:
(1)解:FG⊥ED.理由如下:
∵△ABC繞點B順時針旋轉(zhuǎn)90°至△DBE后,∴∠DEB=∠ACB,
∵把△ABC沿射線平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,
∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;
(2)證明:根據(jù)旋轉(zhuǎn)和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,
∵CG∥EB,∴∠BCG=∠CBE=90°,∴四邊形BCGE是矩形,∵CB=BE,
∴四邊形CBEG是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己如FG⊥AB,、CD⊥AB,垂足分別為G、D,∠1=∠2.
求證:∠CED+∠ACB=180°請將下面的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB(已知),
∴∠FGB=∠CDB=90°(垂直的定義)
∴GF∥CD(___________________________)
∵GF∥CD(已證)
∴∠2=∠BCD(___________________________)
又∵∠1=∠2(已知),
∴∠1=∠BCD(___________________________)
∴___________________________,(___________________________)
∴∠CED+∠ACB=180°(___________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點P從點B出發(fā),沿對角線BD向點D勻速運動,速度為4cm/s,過點P作PQ⊥BD交BC于點Q,以PQ為一邊作正方形PQMN,使得點N落在射線PD上,點O從點D出發(fā),沿DC向點C勻速運動,速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點P與點O同時出發(fā),設(shè)它們的運動時間為t(單 位:s)(0<t<)。
(1)如圖1,連接DQ平分∠BDC時,t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請你繼續(xù)進行探究,并解答下列問題:
①證明:在運動過程中,點O始終在QM所在直線的左側(cè);
②如圖3,在運動過程中,當QM與⊙O相切時,求t的值;并判斷此時PM與⊙O是否也相切?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,過點B的直線與對角線AC、邊AD分別交于點E和F.過點E作EG∥BC,交AB于G,則圖中相似三角形有( )
A.4對 B.5對 C.6對 D.7對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為.過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當點在邊上移動時,折痕的端點,也隨之移動.
①當點與點重合時(如圖),求菱形的邊長;
②若限定,分別在邊,上移動,求出點在邊上移動的最大距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com