【題目】如圖,ACABCD的一條對角線,BMAC, DNAC垂足分別為M,N,四邊形BMDN是平行四邊形嗎?請選擇一種你認為比較好的方法證明

【答案】答案見解析

【解析】試題分析:由四邊形ABCD是平行四邊形,可得AD=BCADBC,又由BMACDNAC,即可得BMDNDNA=∠BMC=90°,然后利用AAS證得ADN≌△CBM,即可得DN=BM,由有一組對邊相等且平行的四邊形是平行四邊形,即可證得四邊形BMDN是平行四邊形.

試題解析:解:四邊形BMDN是平行四邊形.理由如下

四邊形ABCD是平行四邊形,AD=BC,ADBC,∴∠DAN=∠BCMBMAC,DNACBMDN,DNA=∠BMC=90°∴△ADN≌△CBMAAS),DN=BM四邊形BMDN是平行四邊形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BC=6cm,AC=8cm,按圖中所示方法將BCD沿BD折疊,使點C落在AB邊的C′點,那么ADC′的面積是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于A點,與y軸、x軸分別相交于B、C兩點,且C(2,0).當x<﹣1時,一次函數(shù)值大于反比例函數(shù)值,當x>﹣1時,一次函數(shù)值小于反比例函數(shù)值.

(1)求一次函數(shù)的解析式;
(2)設函數(shù)y2= 的圖象與 的圖象關于y軸對稱,在y2= 的圖象上取一點P(P點的橫坐標大于2),過P作PQ丄x軸,垂足是Q,若四邊形BCQP的面積等于2,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,C(0,a),D(b,a),其中a,b滿足關系式:|a+3|+(b-a+1)2=0.

(1)a=___,b=___,△BCD的面積為______

(2)如圖2,若AC⊥BC,點P線段OC上一點,連接BP,延長BP交AC于點Q,當∠CPQ=∠CQP時,求證:BP平分∠ABC;

(3)如圖3,若AC⊥BC,點E是點A與點B之間一動點,連接CE,CB始終平分∠ECF,當點E在點A與點B之間運動時,的值是否變化?若不變,求出其值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉探照燈.如圖1所示,燈A射線從AM開始順時針旋轉至AN便立即回轉,燈B射線從BP開始順時針旋轉至BQ便立即回轉,兩燈不停交叉照射巡視.若燈A轉動的速度是每秒2度,燈B轉動的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉動30秒,燈A射線才開始轉動,在燈B射線到達BQ之前,A燈轉動幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時轉動,在燈A射線到達AN之前.若射出的光束交于點C,過C作ACD交PQ于點D,且ACD=120°,則在轉動過程中,請?zhí)骄?/span>BAC與BCD的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小英和小明姐弟二人準備一起去觀看端午節(jié)龍舟賽.但因家中臨時有事,必須留下一人在家,于是姐弟二人采用游戲的方式來確定誰去看龍舟賽.游戲規(guī)則是:在不透明的口袋中分別放入2個白色和1個黃色的乒乓球,它們除顏色外其余都相同.游戲時先由小英從口袋中任意摸出1個乒乓球記下顏色后放回并搖勻,再由小明從口袋中摸出1個乒乓球,記下顏色.如果姐弟二人摸到的乒乓球顏色相同.則小英贏,否則小明贏.
(1)請用樹狀圖或列表的方法表示游戲中所有可能出現(xiàn)的結果.
(2)這個游戲對游戲雙方公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x、y的方程組實數(shù)m是常數(shù)

1若x+y=1,求實數(shù)m的值;

2若-1≤x-y≤5,求m的取值范圍;

32的條件下,化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦經(jīng)銷商計劃同時購進一批電腦機箱和液晶顯示器,若購進電腦機箱10臺,和液晶顯示器8臺,共需要資金7000元,若購進電腦機箱兩臺和液晶顯示器5臺,共需要資金4120元.
(1)每臺電腦機箱、液晶顯示器的進價各是多少元?
(2)該經(jīng)銷商計劃購進這兩種商品共50臺,而可用于購買這兩種商品的資金不超過22240元,根據(jù)市場行情,銷售電腦機箱,液晶顯示器一臺分別可獲得10元和160元,改經(jīng)銷商希望銷售完這兩種商品,所獲得利潤不少于4100元,試問:該經(jīng)銷商有幾種進貨方案?哪種方案獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=ACBC=20,DEABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,MEDNME相交于點O.若OMN是直角三角形,則DO的長是______

查看答案和解析>>

同步練習冊答案