20、如圖所示,已知點A、E、F、D在同一條直線上,AE=DF,BF⊥AD,CE⊥AD,垂足分別為F、E,BF=CE,
求證:AB∥CD.
分析:要證AB∥CD,由圖知證∠A=∠D即可,由題中的BF⊥AD,CE⊥AD,所以∠AFB=∠DFC,BF=CE,AE+EF=DF+EF得△AFB≌△DFC,即可得∠A=∠D,從而求證.
解答:證明:∵AE=DF,
∴AE+EF=DF+EF即AF=DE,
∵BF⊥AD,CE⊥AD,
∴∠AFB=∠DFC=90°,
又∵BF=CE,
∴△AFB≌△DFC,
∴∠A=∠D,
∴AB∥CD.
點評:這題考查了全等三角形的判定及性質(zhì),平行線的判定.同學(xué)們應(yīng)該熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知點E、F分別是△ABC中AC、AB邊的中點,BE、CF相交于點G,F(xiàn)G=2,則CF的長為(  )
A、4B、4.5C、5D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖所示,已知點E、F分別是△ABC中AC、AB邊的中點,BE、CF相交于點G,F(xiàn)G=2,則CF的長為
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①所示,已知點0是∠EPF的平分線上的點,以點0為圓心的圓與角的兩邊分別交于A,B和C,D.求證:AB=CD.
變式:(1)若角的頂點P在圓上,如圖②所示,上述結(jié)論成立嗎?請加以說明;
(2)若角的頂點P在圓內(nèi),如圖③所示,上述結(jié)論成立嗎?請加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知反比例函數(shù)y=
m2x
和一次函數(shù)y=-2x-1,其中依次函數(shù)的圖象經(jīng)過(a,b),(a+1,b+m)兩點.
(1)求反比例函數(shù)的解析式;
(2)如圖所示,已知點A在第二象限,且同時在上述兩個函數(shù)的圖象上,求點A的坐標(biāo);
(3)利用(2)的結(jié)果,試判斷在x軸上是否存在點P,使△AOP為等腰三角形?若存在,把符合條件的P點坐標(biāo)都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知點A(-3,4)和B(-2,1),試在y軸上求一點P,使PA+PB的值最小,并求出點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案