【題目】如圖,已知二次函數(shù)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B,C,點(diǎn)C坐標(biāo)為(8,0),連接AB,AC.
(1)請(qǐng)直接寫出二次函數(shù)的解析式.
(2)判斷△ABC的形狀,并說明理由.
(3)若點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A,N,C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)寫出此時(shí)點(diǎn)N的坐標(biāo).
【答案】(1);(2)直角三角形,證明見解析;(3)(3,0)或(-8,0)或(,0)或(,0)
【解析】
(1)根據(jù)待定系數(shù)法即可求得;
(2)根據(jù)拋物線的解析式求得B的坐標(biāo),然后根據(jù)勾股定理分別求得AB2=20,AC2=80,BC=10然后根據(jù)勾股定理的逆定理即可證得△ABC是直角三角形
(3)分別以A.C兩點(diǎn)為圓心,AC長為半徑畫弧,與m軸交于三個(gè)點(diǎn),由AC的垂直平分線與c軸交于一個(gè)點(diǎn),即可求得點(diǎn)N的坐標(biāo)
(1)∵二次函數(shù)的圖象與y軸交于點(diǎn)A(0,4),與x軸交于點(diǎn)B.C,點(diǎn)C坐標(biāo)(8,0),
∴
解得
∴拋物線表達(dá)式:
△ABC是直角三角形.
令y=0,則
解得x1=8,x2=-2,
∴點(diǎn)B的坐標(biāo)為(-2,0),
由已知可得,
在Rt△ABO中
AB2=BO2+AO2=22+42=20,
在Rt△AOC中
AC2=AO2+CO2=42+82=80,
又∴BC=OB+OC=2+8=10,
∴在△ABC中
AB2+AC2=20+80=102=BC2
∴△ABC是直角三角形
(3)∵A(0,4),C(8,0),
AC==4,
①以A為圓心,以AC長為半徑作圓,交軸于N,此時(shí)N的坐標(biāo)為(-8,0),
②以C為圓心,以AC長為半徑作圓,交x軸于N,此時(shí)N的坐標(biāo)為(,0)或(,0)
③作AC的垂直平分線,交g軸于N,此時(shí)N的坐標(biāo)為(3,0),
綜上,若點(diǎn)N在軸上運(yùn)動(dòng),當(dāng)以點(diǎn)A、N、C為頂點(diǎn)的三角形是等腰三角形時(shí),點(diǎn)N的坐標(biāo)分別為(-8,0)、(,0)、(3,0)、,0)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CE,CB于點(diǎn)P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點(diǎn)P是△ACQ的外心;④AC2=CQCB,其中結(jié)論正確的是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax+bx+c的圖象如圖所示,下列結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④a+b+c>m(am+b)+c(m≠1的實(shí)數(shù)),其中正確的結(jié)論有 ( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對(duì)稱,已知A, D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)對(duì)稱中心的坐標(biāo);
(2)寫出頂點(diǎn)B, C, B1 , C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,D為AC中點(diǎn),E為AB上的動(dòng)點(diǎn),將ED繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到FD,連CF,則線段CF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x+4交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B.
(1)求拋物線解析式;
(2)點(diǎn)C(m,0)是x軸上異于A、O點(diǎn)的一點(diǎn),過點(diǎn)C作x軸的垂線交AB于點(diǎn)D,交拋物線于點(diǎn)E.
①當(dāng)點(diǎn)E在直線AB上方的拋物線上時(shí),連接AE、BE,求S△ABE的最大值;
②當(dāng)DE=AD時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點(diǎn)坐標(biāo)分別為T(1,1),A(2,3),B(3,3),C(4,2).
(1)以點(diǎn)T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別為A′,B′,C′畫出四邊形TA′B′C′;
(2)寫出點(diǎn)A′,B′,C′的坐標(biāo):
A′ ,B′ ,C′ ;
(3)在(1)中,若D(a,b)為線段AC上任一點(diǎn),則變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC≌△DEC,公共頂點(diǎn)為C,B在DE上,則有結(jié)論①∠ACD=∠BCE=∠ABD;②∠DAC+∠DBC=180°;③△ADC∽△BEC;④CD⊥AB,其中成立的是( 。
A.①②③B.只有②④C.只有①和②D.①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com