【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
【答案】(1)當(dāng)﹣4<x<﹣1時(shí),一次函數(shù)大于反比例函數(shù)的值;
(2)一次函數(shù)的解析式為y=x+;m=﹣2;
(3)P點(diǎn)坐標(biāo)是(﹣,).
【解析】
試題(1)根據(jù)一次函數(shù)圖象在反比例函數(shù)圖象上方的部分是不等式的解,觀察圖象,可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式以及m的值;
(3)設(shè)P的坐標(biāo)為(x,x+)如圖,由A、B的坐標(biāo)可知AC=,OC=4,BD=1,OD=2,易知△PCA的高為x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面積相等得,可得答案.
試題解析:(1)由圖象得一次函數(shù)圖象在反比例函數(shù)圖象上方時(shí),﹣4<x<﹣1,
所以當(dāng)﹣4<x<﹣1時(shí),一次函數(shù)大于反比例函數(shù)的值;
(2)設(shè)一次函數(shù)的解析式為y=kx+b,
y=kx+b的圖象過點(diǎn)(﹣4,),(﹣1,2),則
,
解得
一次函數(shù)的解析式為y=x+,
反比例函數(shù)y=圖象過點(diǎn)(﹣1,2),
m=﹣1×2=﹣2;
(3)連接PC、PD,如圖,設(shè)P的坐標(biāo)為(x,x+)如圖,由A、B的坐標(biāo)可知AC=,OC=4,BD=1,OD=2,易知△PCA的高為x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面積相等得
××(x+4)=×|﹣1|×(2﹣x﹣),
x=﹣,y=x+=,
∴P點(diǎn)坐標(biāo)是(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】文化是一個(gè)國(guó)家、一個(gè)民族的靈魂,近年來,央視推出《中國(guó)詩(shī)詞大會(huì)》、《中國(guó)成語大會(huì)》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對(duì)這些欄目的喜愛情況,某學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國(guó)詩(shī)詞大會(huì)》(記為B)、《中國(guó)成語大會(huì)》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個(gè)欄目,也可以寫出一個(gè)自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息解答下列問題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并求出扇形統(tǒng)計(jì)圖中“B”所在扇形圓心角的度數(shù);
(3)若選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機(jī)選出兩名學(xué)生參加座談,請(qǐng)用列表法或畫樹狀圖的方法求出剛好選到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,C,B三地依次在一條直線上,甲騎摩托車直接從C地前往B地;乙開車以80km/h的速度從A地前往B地,在C地辦理事務(wù)耽誤1 h后,繼續(xù)前往B地.已知兩人同時(shí)出發(fā)且速度不變,又恰好同時(shí)到達(dá)B地.設(shè)出發(fā)x h后甲乙兩人離C地的距離分別為y1 kmy2 km,圖①中線段OD表示y1與x的函數(shù)圖像,線段EF表示y2與x函數(shù)的部分圖像.
(1)甲的速度為 km/h,點(diǎn)E坐標(biāo)為 ;
(2)求線段EF所表示的y2與x之間的函數(shù)表達(dá)式;
(3)設(shè)兩人相距S千米,在圖②所給的直角坐標(biāo)系中畫出S關(guān)于x的函數(shù)圖像.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b是任意兩個(gè)不等實(shí)數(shù),我們規(guī)定滿足不等式a≤x≤b的實(shí)數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)m≤x≤n時(shí),有m≤y≤n,我們就稱此函數(shù)閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4.當(dāng)x=1時(shí),y=3;當(dāng)x=3時(shí),y=1,即當(dāng)1≤x≤3時(shí),有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”
(1)反比例函數(shù)是閉區(qū)間[1,2019]上的“閉函數(shù)”嗎?請(qǐng)判斷并說明理由.
(2)若二次函數(shù)y=x2﹣2x﹣k是閉區(qū)間[1,2]上的“閉函數(shù)”,求k的值;
(3)若一次函數(shù)y=kx+b(k≠0)是閉區(qū)間[m,n]上的“閉函數(shù)”,求此函數(shù)的解析式(用含m,n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視“經(jīng)典詠流傳”開播以來受到社會(huì)廣泛關(guān)注,某校就“中華文化我傳承﹣﹣地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為 ,扇形統(tǒng)計(jì)圖中C類所在扇形的圓心角度數(shù)為 ;
(2)若該校共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生選擇D類的大約有多少人?
(3)在調(diào)查的A類4人中,剛好有2名男生2名女生,從中隨機(jī)抽取兩名同學(xué)擔(dān)任兩個(gè)角色,用畫樹形圖或列表的方法求出抽到的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,小正方形格子的邊長(zhǎng)為1,Rt△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問題:
(1)寫出A,C兩點(diǎn)的坐標(biāo);
(2)畫出△ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形△A1B1C1;
(3)畫出△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出點(diǎn)C旋轉(zhuǎn)至C2經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0),點(diǎn)B是其頂點(diǎn),∠AOB=45°,OC⊥OB交此拋物線于點(diǎn)C,動(dòng)直線y=kx與拋物線交于點(diǎn)D,分別過點(diǎn)B、C作BE、CF垂直動(dòng)直線y=kx于點(diǎn)E、F.
(1)求此拋物線的解析式;
(2)當(dāng)直線y=kx把∠AOC分成的兩個(gè)角的度數(shù)之比恰好為1:2時(shí),求k的值;
(3)BE+CF是否存在最大值?若存在,請(qǐng)直接寫出此最大值和此時(shí)k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,3),B(﹣4,0),C.(0,0)
(1)將△ABC向上平移1個(gè)單位長(zhǎng)度,再向右平移5個(gè)單位長(zhǎng)度后得到的△A1B1C1,畫出△A1B1C1,并直接寫出點(diǎn)A1的坐標(biāo);
(2)△ABC繞原點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)如果△A2B2O,通過旋轉(zhuǎn)可以得到△A1B1C1,請(qǐng)直接寫出旋轉(zhuǎn)中心P的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生對(duì)博鰲論壇會(huì)的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將調(diào)查結(jié)果記作“非常了解,了解,了解較少,不了解.”四類分別統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計(jì)圖中所在的扇形的圓心角度數(shù)為______;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1600名學(xué)生,請(qǐng)你估計(jì)對(duì)博鰲論壇會(huì)的了解情況為“非常了解”的學(xué)生約有多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com