【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.
(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由

【答案】
(1)

解:如圖1,

過(guò)點(diǎn)E作EH⊥OA于點(diǎn)H,EF與y軸的交點(diǎn)為M.

∵OE=OA,α=60°,

∴△AEO為正三角形,

∴OH=3,EH= =3

∴E(﹣3,3 ).

∵∠AOM=90°,

∴∠EOM=30°.

在Rt△EOM中,

∵cos∠EOM=

= ,

∴OM=4

∴M(0,4 ).

設(shè)直線EF的函數(shù)表達(dá)式為y=kx+4

∵該直線過(guò)點(diǎn)E(﹣3,3 ),

∴﹣3k+4 =3 ,

解得k=

所以,直線EF的函數(shù)表達(dá)式為y= x+4


(2)

解:如圖2,

射線OQ與OA的夾角為α( α為銳角,tanα ).

無(wú)論正方形邊長(zhǎng)為多少,繞點(diǎn)O旋轉(zhuǎn)角α后得到正方

形OEFG的頂點(diǎn)E在射線OQ上,

∴當(dāng)AE⊥OQ時(shí),線段AE的長(zhǎng)最小.

在Rt△AOE中,設(shè)AE=a,則OE=2a,

∴a2+(2a)2=62,解得a1= ,a2=﹣ (舍去),

∴OE=2a=

,∴S正方形OEFG=OE2=


(3)

解:設(shè)正方形邊長(zhǎng)為m.

當(dāng)點(diǎn)F落在y軸正半軸時(shí).

如圖3,

當(dāng)P與F重合時(shí),△PEO是等腰直角三角形,有 = =

在Rt△AOP中,∠APO=45°,OP=OA=6,

∴點(diǎn)P1的坐標(biāo)為(0,6).

在圖3的基礎(chǔ)上,

當(dāng)減小正方形邊長(zhǎng)時(shí),

點(diǎn)P在邊FG 上,△OEP的其中兩邊之比不可能為 :1;

當(dāng)增加正方形邊長(zhǎng)時(shí),存在 = (圖4)和 = (圖5)兩種情況.

如圖4,

△EFP是等腰直角三角形,

= ,

= ,

此時(shí)有AP∥OF.

在Rt△AOE中,∠AOE=45°,

∴OE= OA=6

∴PE= OE=12,PA=PE+AE=18,

∴點(diǎn)P2的坐標(biāo)為(﹣6,18).

如圖5,

過(guò)P作PR⊥x軸于點(diǎn)R,延長(zhǎng)PG交x軸于點(diǎn)H.設(shè)PF=n.

在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,

在Rt△PEF中,PE2=PF2+EF2=m2+n2,

當(dāng) = 時(shí),

∴PO2=2PE2

∴2m2+2mn+n2=2(m2+n2),得n=2m.

∵EO∥PH,

∴△AOE∽△AHP,

=

∴AH=4OA=24,

即OH=18,

∴m=9

在等腰Rt△PRH中,PR=HR= PH=36,

∴OR=RH﹣OH=18,

∴點(diǎn)P3的坐標(biāo)為(﹣18,36).

當(dāng)點(diǎn)F落在y軸負(fù)半軸時(shí),

如圖6,

P與A重合時(shí),在Rt△POG中,OP= OG,

又∵正方形OGFE中,OG=OE,

∴OP= OE.

∴點(diǎn)P4的坐標(biāo)為(﹣6,0).

在圖6的基礎(chǔ)上,當(dāng)正方形邊長(zhǎng)減小時(shí),△OEP的其中

兩邊之比不可能為 :1;當(dāng)正方形邊長(zhǎng)增加時(shí),存在 = (圖7)這一種情況.

如圖7,過(guò)P作PR⊥x軸于點(diǎn)R,

設(shè)PG=n.

在Rt△OPG中,PO2=PG2+OG2=n2+m2,

在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2

當(dāng) = 時(shí),

∴PE2=2PO2

∴2m2+2mn+n2=2n2+2m2

∴n=2m,

由于NG=OG=m,則PN=NG=m,

∵OE∥PN,∴△AOE∽△ANP,∴ =1,

即AN=OA=6.

在等腰Rt△ONG中,ON= m,

∴12= m,

∴m=6 ,

在等腰Rt△PRN中,RN=PR=6,

∴點(diǎn)P5的坐標(biāo)為(﹣18,6).

所以,△OEP的其中兩邊的比能為 :1,點(diǎn)P的坐標(biāo)是:P1(0,6),P2(﹣6,18),

P3(﹣18,36),P4(﹣6,0),P5(﹣18,6)


【解析】(1)先判斷出△AEO為正三角形,再根據(jù)銳角三角函數(shù)求出OM即可;(2)判斷出當(dāng)AE⊥OQ時(shí),線段AE的長(zhǎng)最小,用勾股定理計(jì)算即可;(3)由△OEP的其中兩邊之比為 :1分三種情況進(jìn)行計(jì)算即可.此題是正方形的性質(zhì)題,主要考查了正方形的性質(zhì),等腰三角形的性質(zhì),勾股定理,解本題的關(guān)鍵是靈活運(yùn)用勾股定理進(jìn)行計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a(bǔ)+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .

(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)

(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年6月,某中學(xué)結(jié)合廣西中小學(xué)閱讀素養(yǎng)評(píng)估活動(dòng),以“我最喜愛(ài)的書(shū)籍”為主題,對(duì)學(xué)生最喜愛(ài)的一種書(shū)籍類(lèi)型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問(wèn)題:

(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?

(2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;

(3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);

(4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛(ài)科普類(lèi)書(shū)籍的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B兩點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)分別為a,b,且點(diǎn)A在點(diǎn)B的左邊,|a|=10,a+b=80,ab<0.

(1)求出a,b的值;

(2)現(xiàn)有一只電子螞蟻P從點(diǎn)A出發(fā),以3個(gè)單位長(zhǎng)度/秒的速度向右運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q從點(diǎn)B出發(fā),以2個(gè)單位長(zhǎng)度/秒的速度向左運(yùn)動(dòng).

①設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)C相遇,求出點(diǎn)C對(duì)應(yīng)的數(shù)是多少?

②經(jīng)過(guò)多長(zhǎng)時(shí)間兩只電子螞蟻在數(shù)軸上相距20個(gè)單位長(zhǎng)度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了綠化校園,計(jì)劃購(gòu)買(mǎi)一批榕樹(shù)和香樟樹(shù),經(jīng)市場(chǎng)調(diào)查,榕樹(shù)的單價(jià)比香樟樹(shù)少20,購(gòu)買(mǎi)3棵榕樹(shù)和2棵香樟樹(shù)共需340.

(1)榕樹(shù)和香樟樹(shù)的單價(jià)各是多少?

(2)根據(jù)學(xué)校實(shí)際情況,需購(gòu)買(mǎi)兩種樹(shù)苗共150,總費(fèi)用不超過(guò)10840,且購(gòu)買(mǎi)香樟樹(shù)的棵數(shù)不少于榕樹(shù)的1.5,請(qǐng)你算算該校本次購(gòu)買(mǎi)榕樹(shù)和香樟樹(shù)共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,是真命題的是(

①面積相等的兩個(gè)直角三角形全等;

②對(duì)角線互相垂直的四邊形是正方形;

③將拋物線 向左平移4個(gè)單位,再向上平移1個(gè)單位可得到拋物線 ;

④兩圓的半徑R、r分別是方程x2-3x+2=0 的兩根,且圓心距d=3, 則兩圓外切.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AD=2AB,點(diǎn)E,F(xiàn)分別是AD,BC的中點(diǎn),連接AF與BE,CE與DF分別交于點(diǎn)M,N兩點(diǎn),則四邊形EMFN是(  )

A. 正方形 B. 菱形 C. 矩形 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是矩形,點(diǎn)在線段的延長(zhǎng)線上,連接于點(diǎn),,點(diǎn)的中點(diǎn).

)求證:

)若,,,點(diǎn)的中點(diǎn),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

已知:如圖1,直線ABCD,點(diǎn)EAB、CD之間的一點(diǎn),連接BE、DE得到∠BED

求證:∠BED =B+D.

1

小冰是這樣做的:

證明:過(guò)點(diǎn)EEFAB,則有∠BEF=B

ABCD,EFCD

∴∠FED=D

∴∠BEF +FED =B+D

即∠BED=B+D

請(qǐng)利用材料中的結(jié)論,完成下面的問(wèn)題:

已知:直線 ABCD,直線MN分別與AB、CD交于點(diǎn)E、F

(1)如圖2,BEF和∠EFD的平分線交于點(diǎn)G猜想∠G的度數(shù),并證明你的猜想;

(2)如圖3,EG1EG2為∠BEF內(nèi)滿足∠1=2的兩條線,分別與∠EFD的平分線交于點(diǎn)G1G2求證:∠FG1 E+G2=180°.

查看答案和解析>>

同步練習(xí)冊(cè)答案