求證:如果一條直線與兩條平行線中的一條垂直那么它與另一條直線也垂直.

答案:
解析:

  解:已知:如圖a∥b.c⊥a

  求證:c⊥b

  證明:∵a∥b(已知)

  ∴∠2=∠1(兩直線平行同位角相等)

  ∵c⊥a(已知)

  ∴∠1=90°(垂直的定義)

  ∴∠2=90°(等量代換)

  ∴c⊥b(垂直定義)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

小華用兩塊不全等的等腰直角三角形的三角板擺放圖形.
(1)如圖①所示△ABC,△DBE,兩直角邊交于點(diǎn)F,過點(diǎn)F作FG∥BC交AB于點(diǎn)G,連接BF、AD,則線段BF與線段AD的數(shù)量關(guān)系是
 
;直線BF與直線AD的位置關(guān)系是
 
,并求證:FG+DC=AC;
(2)如果小華將兩塊三角板△ABC,△DBE如圖②所示擺放,使D、B、C三點(diǎn)在一條直線上,AC、DE的延長線相交于點(diǎn)F,過點(diǎn)F作FG∥BC,交直線AE于點(diǎn)G,連接AD,F(xiàn)B,則FG、DC、AC之間滿足的數(shù)量關(guān)系式是
 
;
(3)在(2)的條件下,若AG=7
2
,DC=5,將一個45°角的頂點(diǎn)與點(diǎn)B重合,并繞點(diǎn)B旋轉(zhuǎn),這個角的兩邊分別交線段FG于P、Q兩點(diǎn)(如圖③),線段DF分別與線段BQ、BP相交于M、N兩點(diǎn),若PG=2,求線段MN的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

29、先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點(diǎn),DE∥BC交AC于點(diǎn)E,那么E也是AC的中點(diǎn),及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點(diǎn)且EF∥AD∥BC.那么F也是CD的中點(diǎn),及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動,使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•邯鄲一模)(1)如圖1,四邊形ACDG與四邊形ECBH都是正方形,且B,C,D在一條直線上,連接DE并延長交線段AB于點(diǎn)F.
求證:AB=DE,AB⊥DE;
(2)如果將(1)中的兩個正方形換成兩個矩形,如圖2,且
AC
CD
=
BC
CE
=
3
,則AB與DE的數(shù)量關(guān)系與位置關(guān)系會發(fā)生什么變化?請說明你的看法和理由.
(3)如果將(1)中的兩個正方形換成兩個直角三角形,如圖3,∠BCE=∠ACD=90°,且
AC
CD
=
BC
CE
=k,且請直接寫出AB與DE的數(shù)量關(guān)系與位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.已知由平行四邊形ABCD各頂點(diǎn)向形外一條直線l作垂線,設(shè)垂足分別為A′,B′,精英家教網(wǎng)C′,D′.
(1)求證:A′A+C′C=B′B+D′D;
(2)如果移動直線l,使它與四邊形ABCD的位置關(guān)系相對變動得更特殊一些(如l過A,或l交AB,BC等),那么,相應(yīng)地結(jié)論會有什么變化?試作出你的猜想和證明;
(3)如果考慮直線l和平行四邊形更一般的關(guān)系(如平行四邊形變成圓,或某一中心對稱圖形,垂線AA',BB',CC',DD'只保持平行等),那么又有什么結(jié)論,試作出你的猜想和證明.

查看答案和解析>>

同步練習(xí)冊答案