【題目】如圖,在AOB中,OA=OB,點C為AB的中點,AB=16,以點O為圈心,6為半徑的圓經(jīng)過點C,分別交OA、OB于點E、F.

(1)求證:AB為O的切線;

(2)求圖中陰影部分的面積.(注:結(jié)果保留π,sin37°=0.6,cos37°=0.8,tan37°=0.75)

【答案】(1)證明見解析(2)48-

【解析】

(1)連接OC,由OA=OB,C是邊AB的中點,根據(jù)三線合一的性質(zhì)可得OC⊥AB,即可可證得AB與⊙O相切;(2)根據(jù)圖中陰影部分的面積=SAOB﹣S扇形EOF即可求解.

(1)證明:連接OC,如圖,

∵OA=OB,點CAB的中點,

∴OC⊥AB,

∴AB⊙O的切線;

(2)解:∵OC⊥AB,

∴AC=BC=AB=8,

Rt△AOC中,tanA===0.75,

∴∠A=37°,

∴∠AOB=180°﹣2×37°=106°,

圖中陰影部分的面積=SAOB﹣S扇形EOF=×16×6﹣=48﹣π.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩城市為了解決空氣質(zhì)量污染問題,對城市及其周邊的環(huán)境污染進行了綜合治理在治理的過程中,環(huán)保部門每月初對兩城市的空氣質(zhì)量進行監(jiān)測,連續(xù)10個月的空氣污染指數(shù)如圖1所示其中,空氣污染指數(shù)≤50時,空氣質(zhì)量為優(yōu);50<空氣污染指數(shù)≤100時,空氣質(zhì)量為良;100<空氣污染指數(shù)≤150時,空氣質(zhì)量為輕微污染

(1)請?zhí)顚懴卤恚?/span>

平均數(shù)

方差

中位數(shù)

空氣質(zhì)量為優(yōu)的次數(shù)

80

80

1060

(2)請回答下面問題

從平均數(shù)和中位數(shù)來分析,甲,乙兩城市的空氣質(zhì)量

從平均數(shù)和方差來分析,甲,乙兩城市的空氣質(zhì)量情況

根據(jù)折線圖上兩城市的空氣污染指數(shù)的走勢及優(yōu)的情況來分析兩城市治理環(huán)境污染的效果

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形ABCD中,點E與點F分別在線段AC、BC上,且四邊形DEFG是正方形.

(1)試探究線段AECG的關(guān)系,并說明理由.

(2)如圖②若將條件中的四邊形ABCD與四邊形DEFG由正方形改為矩形,AB=3,BC=4.

①線段AE、CG在(1)中的關(guān)系仍然成立嗎?若成立,請證明,若不成立,請寫出你認為正確的關(guān)系,并說明理由.

②當△CDE為等腰三角形時,求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過點A,0),B,0),且與y軸相交于點C

1求這條拋物線的表達式;

2)求∠ACB的度數(shù);

3設點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當DCEAOC相似時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初二年級數(shù)學考試,(滿分為100分,該班學生成績均不低于50分)作了統(tǒng)計分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請你根據(jù)圖表提供的信息,解答下列問題:

分組

49.5~59.5

59.5~69.5

69.5~79.5

79.5~89.5

89.5~100.5

合計

頻數(shù)

2

a

20

16

4

50

頻率

0.04

0.16

0.40

0.32

b

1

(1)頻數(shù)、頻率分布表中a=  ,b=  ;(答案直接填在題中橫線上)

(2)補全頻數(shù)分布直方圖;

(3)若該校八年級共有600名學生,且各個班級學生成績分布基本相同,請估計該校八年級上學期期末考試成績低于70分的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,DBA=60°,把ABD繞點B逆時針旋轉(zhuǎn)使得點A落在BD上,點A對稱點為點A1,點D對稱點為點D1,A1 D1與BC交于點E,連接D1C.

(1)求證:EC=EA1;

(2)求證:點D1、C、D在同一直線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰 RtABC 中,∠BAC90°,ADBC D,∠ABC 的平分線分別交 AC,AD E,F,點M EF 的中點,AM 的延長線交 BC N,連接 DM,NF,EN.下列結(jié)論:①△AFE為等腰三角形;②△BDF≌△ADN;③NF所在的直線垂直平分AB;④DM平分∠BMN;⑤AEENNC;⑥.其中正確結(jié)論的個數(shù)是( )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商城銷售A,B兩種自行車,A型自行車售價為2200/輛,B型自行車售價為1750/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80000元購進A型自行車的數(shù)量與用64000元購進B型自行車的數(shù)量相等.

(1)求A,B兩種自行車的進價分別是多少元/輛?

(2)現(xiàn)在商城準備一次購進這兩種自行車共100輛,設購進A型自行車m輛,這100輛自行車的銷售總利潤為w元,要求購進B型自行車數(shù)量不少于A型自行車數(shù)量的2倍,且A型車輛至少30輛,請用含m的代數(shù)式表示w,并求獲利最大的方案以及最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小華有一個容量為8GB (1GB= 1024MB)U盤,U盤中已經(jīng)存儲了一個視頻文件,其余空間都用來存儲照片,若每張照片占用的內(nèi)存容量均相同,圖片數(shù)量x ()和剩余可用空間y (MB)的部分關(guān)系如表:

圖片數(shù)量

100

150

200

400

800

剩余可用空間

5700

5550

5400

4800

3600

(1)由上表可知,yx之間滿足___ ___(一次二次反比例”)函數(shù)的關(guān)系,求出yx之間的關(guān)系式.

(2)求出U盤中視頻文件的占用內(nèi)存容量.

查看答案和解析>>

同步練習冊答案