【題目】如圖,在中,平分,為線段上的一個(gè)動(dòng)點(diǎn),交直線于點(diǎn).

1)若,求的度數(shù);

2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),求證:.

【答案】125°;(2)見解析

【解析】

1)中,首先根據(jù)三角形的內(nèi)角和定理求得∠BAC的度數(shù),再根據(jù)角平分線的定義求得∠DAC的度數(shù),從而根據(jù)三角形的內(nèi)角和定理即可求出∠ADC的度數(shù),進(jìn)一步求得∠E的度數(shù);

2)中,根據(jù)第(1)小題的思路即可推導(dǎo)這些角之間的關(guān)系.

解:(1)∵∠B35°,∠ACB85°,∴∠BAC60°.

∵AD平分∠BAC∴∠DAC30°.

∴∠ADC65°.

∵∠DPE90°,∴∠E25°

(2)證明:∵∠B∠BAC∠ACB180°

∴∠BAC180°(∠B∠ACB)

∵AD平分∠BAC,

∴∠BAD∠BAC90° (∠B∠ACB)

∴∠ADC∠B∠BAD90° (∠ACB∠B)

∵PE⊥AD,∴∠DPE90°.

∴∠ADC∠E90°.

∴∠E90°∠ADC

∠E (∠ACB∠B)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,D是線段BC的延長線上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.

(1)如圖1,點(diǎn)D在線段BC的延長線上移動(dòng),若∠BAC=30°,則∠DCE=   

(2)設(shè)∠BAC=α,∠DCE=β:

如圖1,當(dāng)點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),αβ之間有什么數(shù)量關(guān)系?請說明理由;

當(dāng)點(diǎn)D在直線BC上(不與B、C重合)移動(dòng)時(shí),αβ之間有什么數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)y=(x0)的圖象上,有點(diǎn)P1,P2,P3,P4,…,它們的橫坐標(biāo)依次為2,4,6,8,…分別過這些點(diǎn)作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次記為S1,S2,S3,…,Sn,則S1+S2+S3++Sn=_____(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為(  )

A. 6 B. 9 C. 11 D. 無法計(jì)算

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線軸負(fù)半軸、軸正半軸分別交于兩點(diǎn),的長度分別為,且滿足.

1________三角形.

2)如圖②,正比例函數(shù)的圖象與直線交于點(diǎn),過兩點(diǎn)分別作,,若,,求的長.

3)如圖③,上一動(dòng)點(diǎn),以為斜邊作等腰直角,的中點(diǎn),連,試問:線段是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.

(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;

(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請說明理由.

(3)如圖3,延長BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.

①求∠CAM的度數(shù);

②當(dāng)FH=,DM=4時(shí),求DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,的平分線相交于點(diǎn),的平分線相交于點(diǎn),,的平分線相交于點(diǎn)……以此類推,則的度數(shù)是___________(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是點(diǎn)A(2,3)、點(diǎn)B(1,1)、點(diǎn)C(0,2)

1)作ABC關(guān)于C成中心對稱的A1B1C1;

2)將A1B1C1向右平移3個(gè)單位,作出平移后的A2B2C2;

3)在x軸上求作一點(diǎn)P,使PA1+PC1的值最小,并寫出點(diǎn) P 的坐標(biāo).(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,且關(guān)于的一元二次方程沒有實(shí)數(shù)根,有下列結(jié)論:其中,正確的是結(jié)論的個(gè)數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案