【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
① BC與CF的位置關(guān)系為 ;
② BC,CD,CF之間的數(shù)量關(guān)系為 .(直接寫出結(jié)論)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=, CD=BC,則GE的長為 .(請直接寫出結(jié)果)
【答案】(1)①BC⊥CF;②BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC,詳見解析;(3).
【解析】
(1) 根據(jù)正方形的性質(zhì)得到∠DAF=∠BAC=90°, 推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;根據(jù)全等三角形的性質(zhì)得到CF=BD, ∠ACF=∠ABD,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=90",推出△DAB≌△FAC,根據(jù)全等三角形的性質(zhì)以及等腰三角形的角的性質(zhì)可得到結(jié)論;
(3) 過A作AH⊥BC于H,過E作EM⊥BD于M,EN⊥CF于N,如圖3所示,由△ADH≌△DEM,推出EM=DH=3,DM=AH=2, 推出CN=EM=3,EN=CM=3,由△BCG是等腰直角三角形,推出CG=BC=4,推出GN=CG-CN=1,再由勾股定理即可解決問題.
(1)①∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=∠BAC=90°,
∴∠BAD=∠CAF,
∵AB=AC,
∴△DAB≌△FAC,
∴∠B=∠ACF,
∴∠ACB+∠ACF=∠ACB+∠ABC=90°,
∴BC⊥CF,
故答案為:BC⊥CF;
②∵△DAB≌△FAC,
∴CF=BD,
∵BC=BD+CD,
∴BC=CF+CD,
故答案為:BC=CF+CD;
(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC,理由如下:
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=∠BAC=90°,
∴∠BAD=∠CAF,
∵AB=AC,
∴△DAB≌△FAC,
∴∠ABD=∠ACF,
∵∠BAC=90°,AB=AC,
∴∠ACB=∠ABC=45°,
∴∠ABD=180°-45°=135°,
∴∠BCF=∠ACF-∠ACB=135°-45°=90°,
∴CF⊥BC,
∵CD=DB+BC,DB=CF,
∴CD=CF+BC;
(3)過A作AH⊥ BC于H,過E作EM⊥BD于M,EN⊥CF于N,如圖3所示:
∵∠BAC=90°,AC=AB=,
∴BC=4,
∴CD=BC=1,
∵AH⊥BC,
∴AH=BC=BH=CH=2,
∴DH=CH+CD=3,
∵四邊形ADEF是正方形,
∴AD=DE,∠ADE=90°,
∵BC⊥CF,EM⊥BD,EN⊥CF,
∴四邊形CMEN是矩形,
∴NE=CM,EM=CN,
∵∠AHD=∠ADE=∠EMD=90°,
∴∠ADH+∠EDM=∠EDM+∠DEM=90",
∴∠ ADH=∠DEM,
∴△ADH≌△DEM (AAS) ,
∴EM=DH=3,DM=AH=2,
∴CN=EM=3, EN=CM=3,
∵∠ABC=45°,
∴∠BGC=45° ,
∴△BCG是等腰直角三角形,
∴CG=BC=4,
∴GN=1,
在Rt△EGN中,EG=.
故答案為: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)P以每秒1cm的速度沿圖甲的邊框按從BCDEFA的路徑移動,相應(yīng)的△ABP的面積S與時(shí)間t之間的關(guān)系如圖乙中的圖象表示.若AB=3cm,試回答下列問題
(1)圖甲中的BC長是多少?
(2)圖乙中的a是多少?
(3)圖甲中的圖形面積是多少?
(4)圖乙中的b是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行電腦知識競賽,將八年級兩個(gè)班參賽學(xué)生的成績(得分均為整數(shù))進(jìn)行整理后,分成5組,繪制出如下的頻數(shù)分布直方圖(如圖),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別為0.30、0.15、0.10、0.05,第二組的頻數(shù)是40
(1)求第二組的頻率,并補(bǔ)全這個(gè)頻數(shù)分布直方圖;
(2)這兩個(gè)班參賽的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課外興趣小組在本校學(xué)生中開展“感動中國2014年度人物”先進(jìn)事跡知曉情況專題調(diào)查活動,采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:
類別 | A | B | C | D |
頻數(shù) | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a=________,b=________;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A1(2,0),A2(1,-1),A3(0,0),則依圖中所示規(guī)律,A2013的坐標(biāo)為
A. (2,1006)B. (1008,0)C. ( -1006,0)D. (1,-1007)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+(k+13)和反比例函數(shù)的圖象相交于點(diǎn)A與點(diǎn)B.過A點(diǎn)作AC⊥x軸于點(diǎn)C,S△AOC=6.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文化商店計(jì)劃同時(shí)購進(jìn)A、B兩種儀器,若購進(jìn)A種儀器2臺和B種儀器3臺,共需要資金1700元;若購進(jìn)A種儀器3臺,B種儀器1臺,共需要資金1500元.
(1)求A、B兩種型號的儀器每臺進(jìn)價(jià)各是多少元?
(2)已知A種儀器的售價(jià)為760元/臺,B種儀器的售價(jià)為540元/臺.該經(jīng)銷商決定在成本不超過30000元的前提下購進(jìn)A、B兩種儀器,若B種儀器是A種儀器的3倍還多10臺,那么要使總利潤不少于21600元,該經(jīng)銷商有哪幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:∠ACB是△ABC的一個(gè)內(nèi)角.
求作:∠APB=∠ACB.
小路的作法如下:
老師說:“小路的作法正確.”
請回答:(1)點(diǎn)O為△ABC外接圓圓心(即OA=OB=OC)的依據(jù)是_____;
(2)∠APB=∠ACB的依據(jù)是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com