【題目】如圖,在RtABC中,ABAC,DE是斜邊BC上的兩點,∠EAD45°,將ADC繞點A順時針旋轉90°,得到AFB,連接EF

1)求證:EFED

2)若AB2,CD1,求FE的長.

【答案】1)見解析;(2EF.

【解析】

1)由旋轉的性質(zhì)可求∠FAE=∠DAE45°,即可證△AEF≌△AED,可得EFED

2)由旋轉的性質(zhì)可證∠FBE90°,利用勾股定理和方程的思想可求EF的長.

1)∵∠BAC90°,∠EAD45°

∴∠BAE+DAC45°,

∵將△ADC繞點A順時針旋轉90°,得到△AFB

∴∠BAF=∠DAC,AFAD,CDBF,∠ABF=∠ACD45°,

∴∠BAF+BAE45°=∠FAE,

∴∠FAE=∠DAEADAF,AEAE,

∴△AEF≌△AEDSAS),

DEEF

2)∵ABAC2,∠BAC90°,

BC4,

CD1,

BF1,BD3,即BE+DE3,

∵∠ABF=∠ABC45°

∴∠EBF90°,

BF2+BE2EF2,

1+3EF2EF2,

EF

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點AAEBC,垂足為E,連接DE,F為線段DE上一點,且AFE=B

1)求證:ADF∽△DEC;

2)若AB=8AD=6,AF=4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,二次函數(shù)的圖象與x軸的一個交點為A3,0),另一個交點為B,且與y軸交于點C

1)求m的值;

2)求點B的坐標;

3)該二次函數(shù)圖像上有一點Dxy)(其中,),使,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AB2,AD3,O為邊AD上一點,以O為圓心,OA為半徑r作⊙O,過點B作⊙O的切線BF,F為切點.

1)如圖1,當⊙O經(jīng)過點C時,求⊙O截邊BC所得弦MC的長度;

2)如圖2,切線BF與邊AD相交于點E,當FEFO時,求r的值;

3)如圖3,當⊙O與邊CD相切時,切線BF與邊CD相交于點H,設BCH、四邊形HFOD、四邊形FOAB的面積分別為S1、S2、S3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.

(1)求面料和里料的單價;

(2)該款外套9月份投放市場的批發(fā)價為150/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.

①設10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)

②進入11月份以后,銷售情況出現(xiàn)好轉,廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎上實施價格上。阎獙VIP客戶的降價率和對普通客戶的提價率相等,結果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形中,邊長為10,.順次連結菱形各邊中點,可得四邊形;順次連結四邊形各邊中點,可得四邊形;順次連結四邊形各邊中點,可得四邊形;按此規(guī)律繼續(xù)下去.則四邊形的周長是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于AB兩點,與y軸交于C點,且對稱軸為x1,點B坐標為(﹣1,0),則下面的四個結論,其中正確的個數(shù)為( 。

2a+b04a2b+c0ac0④當y0時,﹣1x4

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD繞點B逆時針旋轉30°后得到正方形BEFG,EF與AD相交于點H,延長DA交GF于點K.若正方形ABCD邊長為,則AK=

查看答案和解析>>

同步練習冊答案