如圖,已知直角梯形ABCD中,AD∥BC,AB⊥BC ,AD=2cm,AB=8cm,CD=10cm.
(1)求梯形ABCD的周長;
(2)動點(diǎn)P從點(diǎn)B出發(fā),以1cm/s的速度沿B→A→D→C方向向點(diǎn)C運(yùn)動;動點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿C→D→A方向向點(diǎn)A運(yùn)動;過點(diǎn)Q作QF⊥BC于點(diǎn)F.若P、Q兩點(diǎn)同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時整個運(yùn)動隨之結(jié)束,設(shè)運(yùn)動時間為t秒.問:
在運(yùn)動過程中,是否存在這樣的t,使得以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.
(1) 28cm(2) 當(dāng)t=或8≤t<10或10<t≤12時,以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形解析:
解:(1)過點(diǎn)D作DE⊥BC于點(diǎn)E
∵四邊形ABCD是直角梯形
∴四邊形ABED是矩形
∴AD=BE=2,AB=DE=8
在Rt△DEC中,CE==="6"
∴梯形ABCD的周長= AB+BC+CD+DA=8+8+10+2=28cm.
………3分
(2) ① 當(dāng)0≤t≤8時,過點(diǎn)Q作QG⊥AB于點(diǎn)G
則AP=8-t,DQ=10-t,AD=2,
∵Rt△CQF∽Rt△CDE
∴CF=,QF=,∴PG==,QG=8-
=(8-t)2+22=t2-16t+68,
PQ2=QG2+PG2=(8-2+(2= 
若DQ=PD,則(10-t)2= t2-16t+68,解得:t=8;…………………5分
若DQ=PQ,則(10-t)2=,       
解得:t1= ,t2=>8(舍去),此時t=;………6分
②當(dāng)8<t<10時,PD=DQ=10-t,                
∴此時以DQ為一腰的等腰△DPQ恒成立; ……………………7分
③當(dāng)t=10時,點(diǎn)P、D、Q三點(diǎn)重合,無法構(gòu)成三角形;………………………8分
④當(dāng)10<t≤12時,PD="DQ=" t-10,
∴此時以DQ為一腰的等腰△DPQ恒成立;     ………………………9分
綜上所述,當(dāng)t=或8≤t<10或10<t≤12時,以P、D、Q為頂點(diǎn)的三角形恰好是以DQ為一腰的等腰三角形.                ………………………10分
(1)過點(diǎn)D作DE⊥BC于點(diǎn)E,然后求出AD=BE=2,AB=DE=8,在Rt△DEC中,根據(jù)CE= 求出CE,即可求出BC的長,從而求得梯形ABCD的周長
(2)(i)當(dāng)0≤t≤8時,過點(diǎn)Q作QG⊥AB于點(diǎn)G,過點(diǎn)Q作QF⊥CB于點(diǎn)F,根據(jù)△CQF∽△CDE得出,所以CF= ,QF= ,所以PG=t= ,QG=8-,然后分別用t表示出PD2=t2-16t+68,PQ2=+64,若DQ=PD,則(10-t)2=t2-16t+68,若DQ=PQ,則(10-t)2=+64,最后解方程即可;
(ii)當(dāng)8<t<10時,PD=DQ=10-t,此時以DQ為一腰的等腰△DPQ恒成立;而當(dāng)t=10時,點(diǎn)P、D、Q三點(diǎn)重合,無法構(gòu)成三角形,當(dāng)10<t≤12時,PD="DQ=" t-10,此時以DQ為一腰的等腰△DPQ恒成立,從而得出最后答案;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直角梯形ABCD中,AD∥BC∥EF,∠A=90°,BC=DC=4,AC、BD交于E,且EF=ED.
(1)求證:△DBC為等邊三角形.
(2)若M為AD的中點(diǎn),求過M、E、C的拋物線的解析式.
(3)判定△BCD的外心是否在該拋物線上(說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、當(dāng)我們遇到梯形問題時,我們常用分割的方法,將其轉(zhuǎn)化成我們熟悉的圖形來解決:
(1)按要求對下列梯形分割(分割線用虛線)
①分割成一個平行四邊形和一個三角形;  ②分割成一個長方形和兩個直角三角形;

(2)如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=4cm,BC=8cm,∠C=45°,請你用適當(dāng)?shù)姆椒▽μ菪畏指睿梅指詈蟮膱D形求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形的一條對角線把梯形分為一個直角三角形和一個邊長為8cm的等邊三角形,則梯形的中位線長為 ( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.點(diǎn)E是CD的中點(diǎn),點(diǎn)F是AB上的點(diǎn),∠ADF=45°,F(xiàn)E=a,梯形ABCD的面積為m.
(1)求證:BF=BC;
(2)求△DEF的面積(用含a、m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,∠C=60°,BC=12cm,DC=16cm,動點(diǎn)P沿A→D→C線路以2cm/秒的速度向C運(yùn)動,動點(diǎn)Q沿B→C線路以1cm/秒的速度向C運(yùn)動.P、Q兩點(diǎn)分別從A、B同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)C點(diǎn)時,另一點(diǎn)也隨之停止.設(shè)運(yùn)動時間為t秒,△PQB的面積為y cm2
(1)求AD的長及t的取值范圍;
(2)求y關(guān)于t的函數(shù)關(guān)系式;
(3)是否存在這樣的t,使得△PQB的面積為
9
3
2

查看答案和解析>>

同步練習(xí)冊答案