【題目】問題情境:以直線AB上一點O為端點作射線OM、ON,將一個直角三角形的直角頂點放在O處(∠COD=90°).
(1)如圖1,直角三角板COD的邊OD放在射線OB上,OM平分∠AOC,ON和OB重合,則∠MON=_°;
(2)直角三角板COD繞點O旋轉(zhuǎn)到如圖2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON的度數(shù)。
(3)直角三角板COD繞點O旋轉(zhuǎn)到如圖3的位置,OM平分∠ AOC ,ON平分∠BOD,猜想∠MON的度數(shù),并說明理由。
【答案】(1)135;
(2)∠MON=135°
(3)猜想∠MON=135°,證明見解析.
【解析】
(1)先求出∠COM=45°,再利用∠MON=∠COM+∠CON即可求出;
(2)先求出∠AOC+∠BOD=90°,再根據(jù)OM平分∠AOC,ON平分∠BOD,可知∠COM+∠DON=45°,再利用∠MON=∠COM+∠DON+∠COD即可求出;
(3)如圖延長NO至Q、DO至H,則∠DOH為平角,∠COH=90°,根據(jù)對頂角相等,知∠BOD=∠AOH,∠NOD=∠QOH,再根據(jù)∠COH=∠AOC-∠AOH=90°,又OM平分∠AOC,ON平分∠BOD,得∠COM-∠QOH=45°,則∠MON=∠COD-∠NOD+∠COM=∠COD+∠COM-∠QOH=90°+45°=135°.
(1)∵∠AOC=90°,OM平分∠AOC,
∴∠COM=45°,
∴∠MON=∠COM+∠CON=45°+90°=135°;
(2)∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵OM平分∠AOC,ON平分∠BOD,
∴∠COM+∠DON=(∠AOC+∠BOD)=45°,
∴∠MON=∠COM+∠DON+∠COD=45°+90°=135°;
(3)猜想∠MON=135°,證明如下:
如圖延長NO至Q、DO至H,
則∠DOH為平角,∠COH=90°,
∴∠COH=∠AOC-∠AOH=90°,
又∵∠BOD=∠AOH,∠NOD=∠QOH,
OM平分∠AOC,ON平分∠BOD,
∴∠COM-∠QOH=45°,
則∠MON=∠COD-∠NOD+∠COM
=∠COD+∠COM-∠QOH
=90°+45°=135°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,給出以下六個條件中,以其中三個作為已知條件,不能判斷△ABC和△DEF全等的是( ) ①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F;
A.①⑤②B.①②③C.④⑥①D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù))的圖像在第一、三象限.
(1)求m的取值范圍.
(2)如圖,若該反比例函數(shù)的圖像經(jīng)過ABOD的頂點D,點A,B的坐標分別為(0,3),(-2,0).
①求出該反比例函數(shù)的表達式;
②設(shè)P是該反比例函數(shù)圖像上的一點,若OD=OP,則點P的坐標為________________;若以D,O,P為頂點的三角形是等腰三角形,則滿足條件的點P有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來我市大力發(fā)展綠色交通,構(gòu)建公共、綠色交通體系,將“共享單車”陸續(xù)放置在人口流量較大的地方,琪琪同學(xué)隨機調(diào)查了若干市民租用“共享單車”的騎車時間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(),根據(jù)圖中信息,解答下列問題:
(1)這項被調(diào)查的總?cè)藬?shù)是 人,表示組的扇形統(tǒng)計圖的圓心角的度數(shù)為 .
(2)若某小區(qū)共有人,根據(jù)調(diào)查結(jié)果,估計租用“共享單車”的騎車時間為的大約有多少人?
(3)如果琪琪同學(xué)想從組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用“共享單車”的騎車時間情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由一些棱長為單位的相同的小正方體組合成的簡單幾何體.
(1)圖中有_________塊小正方體;
(2)請在相應(yīng)方格紙中分別畫出幾何體的左視圖和俯視圖并用陰影表示出來;
(3)如果在其表面涂漆(幾何體放在地上,底面無法涂上漆),則要涂_________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數(shù)關(guān)系],當加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關(guān)系],當水溫降至20℃時,飲水機又自動開始加熱…,重復(fù)上述程序(如圖所示),根據(jù)圖中提供的信息,解答下列問題:
(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數(shù)關(guān)系式;
(2)求圖中t的值;
(3)若小明在通電開機后即外出散步,請你預(yù)測小明散步45分鐘回到家時,飲水機內(nèi)的溫度約為多少℃?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=,點P是AC邊上的一動點(點P不與端點A、C重合),過點A作AE⊥BP于D,交BC的延長線于點E.
(1)求證:△ACE≌△BCP;
(2)在點P的移動過程中,若AD=DC,試求CP的長;
(3)試探索:在點P的移動過程中,∠ADC的大小是否保持不變?若保持不變,請求出∠ADC的大;若有變化,請說明變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=3x與雙曲線y= (k≠0,且x>0)交于點A,點A的橫坐標是1.
(1)求點A的坐標及雙曲線的解析式;
(2)點B是雙曲線上一點,且點B的縱坐標是1,連接OB,AB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D是半圓O上的三等分點,直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點F.
(1)求∠AFE的度數(shù);
(3)求陰影部分的面積(結(jié)果保留π和根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com