【題目】如圖,△ABC中,∠A=67.5°,BC=4,BE⊥CA于E,CF⊥AB于F,D是BC的中點(diǎn).以F為原點(diǎn),F(xiàn)D所在直線為x軸構(gòu)造平面直角坐標(biāo)系,則點(diǎn)E的坐標(biāo)是__________.
【答案】(2-,)
【解析】分析:連接DE,過(guò)E作EH⊥OD于H,求得∠EDO=45°,即可得到Rt△DEH中,DH=cos45°×DE=,EH=,進(jìn)而得出OH=OD-DH=2-,即點(diǎn)E的坐標(biāo)是(2-,).
詳解:如圖所示,連接DE,過(guò)E作EH⊥OD于H,
∵BE⊥CA于E,CF⊥AB于F,D是BC的中點(diǎn),
∴DE=DC=BC=DO=DB=2,
∴∠DCE=∠DEC,∠DBO=∠DOB,
∵∠A=67.5°,
∴∠ACB+∠ABC=112.5°,
∴∠CDE+∠BDO=(180°-2∠DCE)+(180°-2∠DBO)
=360°-2(∠DCE+∠DBO)
=360°-2×112.5°
=135°,
∴∠EDO=45°,
∴Rt△DEH中,DH=cos45°×DE=,EH=
∴OH=OD-DH=2-,
點(diǎn)E的坐標(biāo)是(2-,)
故答案為:(2-,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
(1)求證:ΔABF≌ΔEDF;
(2)將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)G正好重合,連接DG,若AB=6,BC=8,.求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)A與數(shù)軸上的原點(diǎn)重合,AB是圓片的直徑.
(1)把圓片沿?cái)?shù)軸向左滾動(dòng)1周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)C的位置,點(diǎn)C表示的數(shù)是______數(shù)(填“無(wú)理”或“有理”),這個(gè)數(shù)是______;
(2)把圓片沿?cái)?shù)軸滾動(dòng)2周,點(diǎn)A到達(dá)數(shù)軸上點(diǎn)D的位置,點(diǎn)D表示的數(shù)是______;
(3)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,-1,-5,+4,+3,-2當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),A點(diǎn)運(yùn)動(dòng)的路程共有多少?此時(shí)點(diǎn)A所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示①,OP為一條拉直的細(xì)線,A,B兩點(diǎn)在OP上,且OA:AP=1:3,OB:BP =3:5.若先固定B點(diǎn),將OB折向BP,使得OB重疊在BP上,如圖13-②,再?gòu)膱D②的A點(diǎn)及與A點(diǎn)重疊處一起剪開(kāi),使得細(xì)線分成三段,求三段細(xì)線由小到大的長(zhǎng)度比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別在邊AB、AC上,如果DE∥BC,且DE= BC.
(1)如果AC=6,求CE的長(zhǎng);
(2)設(shè) = , = ,求向量 (用向量 、 表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)舉行“中國(guó)夢(mèng)校園好聲音”歌手大賽,初、高中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D4所示.
(1)根據(jù)圖示填寫下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;
(3)計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(2,0),以OA為一邊在第四象限內(nèi)畫正方形OABC,D(m,0)為x軸上的一個(gè)動(dòng)點(diǎn),以BD為一邊畫正方形BDFE(點(diǎn)E在直線x=2的右側(cè)).
(1)當(dāng)m>2時(shí)(如圖1),試判斷線段AE與CD的數(shù)量關(guān)系,并說(shuō)明理由.
(2)當(dāng)AE=時(shí),求點(diǎn)F的坐標(biāo).
(3)連接CF、OF,請(qǐng)直接寫出CF+OF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=90°,以AB為直徑的⊙O交AC于D,過(guò)點(diǎn)D作⊙O的切線交BC于E,AE交⊙O于點(diǎn)F.
(1)求證:E是BC的中點(diǎn);
(2)求證:ADAC=AEAF=4DO2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動(dòng)點(diǎn)M從點(diǎn)D出發(fā),按折線DCBAD方向以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)D出發(fā),按折線DABCD方向以1cm/s的速度運(yùn)動(dòng)。
(1)若動(dòng)點(diǎn)M、N同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘兩點(diǎn)相遇?
(2)若點(diǎn)E在線段BC上,且BE=3cm,若動(dòng)點(diǎn)M、N同時(shí)出發(fā),相遇時(shí)停止運(yùn)動(dòng),經(jīng)過(guò)幾秒鐘,點(diǎn)A、E、M、N組成平行四邊形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com