精英家教網(wǎng)如圖,已知△ABC中,AE:EB=1:3,BD:DC=2:1,AD與CE相交于F.求
EF
FC
+
AF
FD
的值.
分析:先過(guò)E作EG∥BC,交AD于G,再作DH∥AB交CE于H,由平行線分線段成比例定理的推論,再結(jié)合已知條件,可分別求出
EF
EC
AF
AD
的值,相加即可.
解答:精英家教網(wǎng)解:作EG∥BC交AD于G,則有
AE
EB
=
1
3
,即
AE
AB
=
1
4
,得
EG=
1
4
BD=
1
2
CD,
EF
FC
=
EG
CD
=
1
2

作DH∥AB交CE于H,則DH=
1
3
BE=AE,
AF
FD
=
AE
DH
=1,
EF
FC
+
AF
FD
=
1
2
+1=
3
2
點(diǎn)評(píng):此題考查了相似三角形的性質(zhì):相似三角形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比相等,解題時(shí)要注意比例式的變形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過(guò)A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案