【題目】有大小兩種貨車,輛大貨車與輛小火車一次可以運貨噸,輛大貨車與輛小貨車一次可以運貨噸.

(1)求輛大貨車和輛小貨車一次可以分別運多少噸;

(2)現(xiàn)有噸貨物需要運輸,貨運公司擬安排大小貨車共輛把全部貨物一次運完.求至少需要安排幾輛大貨車?

【答案】(1) 1輛大貨車一次運貨4噸,1輛小貨車一次運貨1.5噸;(2)7輛.

【解析】

1)設(shè)1輛大貨車一次運貨x噸,1輛小貨車一次運貨y噸,,解方程組可得;(2)設(shè)貨物公司安排大貨車輛,則小貨車需要安排輛,,求整數(shù)解可得.

解:(1)設(shè)1輛大貨車一次運貨x噸,1輛小貨車一次運貨y噸,

代入①,得

2)設(shè)貨物公司安排大貨車輛,則小貨車需要安排輛,

解得

為正整數(shù),

最小可以取

答:輛大貨車一次可以運貨噸,輛小貨車一次可以運貨噸,該貨物公司至少安排輛大貨車.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小明坐公交車到濱海公園游玩,他從家出發(fā)0.8小時后達到中心書城,逗留一段時間后繼續(xù)坐公交車到濱海公園,小明離家一段時間后,爸爸駕車沿相同的路線前往海濱公園. 如圖是他們離家路程s(km)與小明離家時間t(h)的關(guān)系圖,請根據(jù)圖回答下列問題:

(1)圖中自變量是____,因變量是______;

(2)小明家到濱海公園的路程為____ km,小明在中心書城逗留的時間為____ h;

(3)小明出發(fā)______小時后爸爸駕車出發(fā);

(4)圖中A點表示___________________________________;

(5)小明從中心書城到濱海公園的平均速度為______km/h,小明爸爸駕車的平均速度為______km/h;(補充;爸爸駕車經(jīng)過______追上小明);

(6)小明從家到中心書城時,他離家路程s與坐車時間t之間的關(guān)系式為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B、C).若線段AD長為正整數(shù),則點D的個數(shù)共有( )

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊含有30°角的直角三角板ABC,在水平桌面上繞點C按順時針方向旋轉(zhuǎn)到A′B′C′的位置,若BC=12cm,則頂點A從開始到結(jié)束所經(jīng)過的路徑長為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC三個頂點的坐標(biāo)分別為A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC關(guān)于原點O對稱的圖形是△A1B1C1

(1)畫出△A1B1C1;
(2)BC與B1C1的位置關(guān)系是 , AA1的長為;
(3)若點P(a,b)是△ABC 一邊上的任意一點,則點P經(jīng)過上述變換后的對應(yīng)點P1的坐標(biāo)可表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校植物園沿路護欄的紋飾部分準(zhǔn)備設(shè)計成若干個形狀、大小完全相同的四邊形圖案,每平移一個圖案,紋飾長度就增加cm(如圖)所示,已知每個四邊形圖案的水平方向的對角線長30cm

1)若=26cm,且該紋飾要用231個四邊形圖案,求紋飾的長度;

2)當(dāng)=20cm時,若保持(1)中紋飾長度不變,則需要多少個這樣的四邊形圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于O點,OMAB.

1)若∠1=2,求∠NOD;

2)若∠1=BOC,求∠AOC與∠MOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】看圖填空,并在括號內(nèi)說明理由:

BD平分∠ABC(已知)

__________=____________________

又∠1=D(已知)

__________=____________________

______________________________

∴∠ABC+__________=180°__________

又∠ABC=55°(已知)

∴∠BCD=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2=50°,EFDB

(1)DGAB平行嗎?請說明理由.

(2)EC平分∠FED,求∠C的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案