【題目】四邊形中,,,的頂點(diǎn)在上,交直線于點(diǎn).
(1)如圖1,若,,連接,求的長(zhǎng).
(2)如圖2,,當(dāng)時(shí),求證:是的中點(diǎn);
(3)如圖3,若,對(duì)角線,交于點(diǎn),點(diǎn)關(guān)于的對(duì)稱點(diǎn)為點(diǎn),連接交于點(diǎn),連接、、,求的長(zhǎng),請(qǐng)直接寫出答案.
【答案】(1);(2)詳見解析;(3).
【解析】
(1)先證明,求出,,利用Rt中,求出,再利用等腰直角三角形的性質(zhì)求出DF的長(zhǎng);
(2)在上取點(diǎn),使,連接,得到為等邊三角形,再證明得到,根,求出,故可得到,即可證明;
(3)先利用,得到平行四邊形為矩形,設(shè)與交點(diǎn)為,根據(jù)對(duì)稱性得到OD垂直平分CC’,根據(jù)等積法求出CM,利用勾股定理求出OM,再根據(jù)中位線的性質(zhì)求出AC’,利用平行線證明,得到,再根據(jù)AD=8,進(jìn)而求出AG的長(zhǎng).
(1)∵
∴∠C=180°-∠B=90°,∠FEB+∠EFB=∠FEB+∠DEC=90°,
∴∠EFB=∠DEC
又
∴,
∴
∵
∴,
在Rt中,
∵,
∴△DEF是等腰直角三角形,
∴;
(2)證明:如圖2,在上取點(diǎn),使,連接,則為等邊三角形,
∴,
∴.
∵四邊形為平行四邊形,,
∴,
∴.
∵,,
∴,
∴,
∴,
∴
∵
∴
∴,,
∴是的中點(diǎn).
(3)解:由題意得,為線段的垂直平分線,設(shè)與交點(diǎn)為
∵,
∴平行四邊形為矩形,
∴,,,
∴.
∵點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),
∴,且,
∴,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) (為常數(shù)),當(dāng)自變量的值滿足時(shí),與其對(duì)應(yīng)的函數(shù)值的最大值為-1,則的值為( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,漏壺是一種古代計(jì)時(shí)器.在它內(nèi)部盛一定量的水,水從壺下的小孔漏出.壺內(nèi)壁有刻度,人們根據(jù)壺中水面的位置計(jì)算時(shí)間.用x(小時(shí))表示漏水時(shí)間,y(厘米)表示壺底到水面的高度,某次計(jì)時(shí)過程中,記錄到部分?jǐn)?shù)據(jù)如下表:
漏水時(shí)間x(小時(shí)) | … | 3 | 4 | 5 | 6 | … |
壺底到水面高度y(厘米) | … | 9 | 7 | 5 | 3 | … |
(1)問y與x的函數(shù)關(guān)系屬于一次函數(shù)、二次函數(shù)和反比例函數(shù)中的哪一種?求出該函數(shù)解析式及自變量x的取值范圍;
(2)求剛開始計(jì)時(shí)時(shí)壺底到水面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明手中有4張背面相同的撲克牌:紅桃6、紅桃9、黑桃6、黑桃9.先將4張牌背面朝上洗勻,再讓小麗抽牌.
(1)小麗從中任意抽取一張撲克牌,抽到黑桃9的概率是__________,抽到偶數(shù)的概率是_________;
(2)小麗從中任意抽取兩張撲克牌,游戲規(guī)則規(guī)定:若小麗抽到的兩張牌是一紅一黑,則小麗勝,若小麗抽到的兩張牌是一奇一偶,則小明勝,問該游戲?qū)﹄p方是否公平.(利用樹狀圖或列表說明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】面對(duì)疫情,每個(gè)人都需要積極行動(dòng)起來,做好預(yù)防工作.為此某校開展了“新型冠狀病毒肺炎”防控知識(shí)競(jìng)賽.現(xiàn)從該校五、六年級(jí)中各隨機(jī)抽取10名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行整理、描述和分析(成績(jī)得分用表示,共分成四組:A.,B.,C.,D.),下面給出了部分信息:
五年級(jí)10名學(xué)生的競(jìng)賽成績(jī)是:99,80,99,86,99,96,90,100,89,82
六年級(jí)10名學(xué)生的競(jìng)賽成績(jī)?cè)?/span>C組中的數(shù)據(jù)是:94,90,94
五、六年級(jí)抽取的學(xué)生競(jìng)賽成績(jī)統(tǒng)計(jì)表
年級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
五年級(jí) | 92 | 93 | 52 | |
六年級(jí) | 92 | 100 | 50.4 |
是據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中,,的值:__________,___________,___________;
(2)由以上數(shù)據(jù),你認(rèn)為該校五、六年級(jí)中哪個(gè)年級(jí)學(xué)生掌握防溺水安全知識(shí)較好?請(qǐng)說明理由(一條理由即可);
(3)該校五、六年級(jí)共1800人參加了此次競(jìng)賽活動(dòng),估計(jì)參加此次競(jìng)賽活動(dòng)成績(jī)優(yōu)秀的學(xué)生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
①cos(α+β)=cosαcosβ﹣sinαsinβ;sin(α+β)=sinαcosβ+cosαsinβ;
②tan(α+β)=.
③利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值,如tan105°=tan(45°+60°)=====.
根據(jù)上面的知識(shí),你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實(shí)際問題:
(1)求cos75°的值;
(2)如圖,直升機(jī)在一建筑物CD上方的點(diǎn)A處測(cè)得建筑物頂端點(diǎn)D的俯角α為60°,底端點(diǎn)C的俯角β為75°,此時(shí)直升機(jī)與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)AB=8,E為平面內(nèi)一動(dòng)點(diǎn),且AE=4,F為CD上一點(diǎn),CF=2,連接EF,ED,則EFED的最小值為( )
A.6B.4C.4D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)與軸交于、兩點(diǎn),,與直線交于、兩點(diǎn),點(diǎn)在軸上,.
(1)求二次函數(shù)的解析式;
(2)在拋物線上有一點(diǎn),若的面積為,求點(diǎn)的橫坐標(biāo);
(3)點(diǎn)在第四象限的拋物線上運(yùn)動(dòng),連接,與直線交于點(diǎn),連接,.設(shè)的面積為,的面積為,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,0),m<0,點(diǎn)B與點(diǎn)A 關(guān)于原點(diǎn)對(duì)稱,直線與雙曲線交于C,D兩點(diǎn).
(1)直接判斷后填空:四邊形ACBD的形狀一定是 ;
(2)若點(diǎn)D(1,t),求雙曲線的解析式;
(3)在(2)的前提下,四邊形ACBD為矩形時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com