【題目】△ABC中,BC=10,AC﹣AB=6.過C作∠BAC的角平分線的垂線,則S△BDC的最大值為( 。
A.10B.15C.20D.25
科目:初中數(shù)學 來源: 題型:
【題目】小穎和小紅兩位同學在學習“概率”時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次實驗,實驗的結(jié)果如下:
(1)計算“3點朝上”的頻率和“5點朝上”的頻率.
(2)小穎說:“根據(jù)實驗,一次實驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次.”小穎和小紅的說法正確嗎?為什么?
(3)小穎和小紅各投擲一枚骰子,用列表或畫樹狀圖的方法求出兩枚骰子朝上的點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下列結(jié)論:① △ODC是等邊三角形;②BC=2AB;③∠AOE=135°; ④S△AOE=S△COE,其中正確的結(jié)論的個數(shù)有
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點E,M分別是線段BD,AD上的動點,連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點N.
(1)如圖①,若點M與點D重合,求證:AF=MN;
(2)如圖②,若點M從點D出發(fā),以1cm/s的速度沿DA向點A運動,同時點E從點B出發(fā),以cm/s的速度沿BD向點D運動,運動時間為ts.
①設BF=ycm,求y關(guān)于t的函數(shù)表達式;
②當BN=2AN時,連接FN,求FN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,我們在“格點”直角坐標系上可以看到:要找或的長度,可以轉(zhuǎn)化為求或的斜邊長.
例如:從坐標系中發(fā)現(xiàn):,,所以,,所以由勾股定理可得:.
(1)在圖①中請用上面的方法求線段的長:______;在圖②中:設,,試用,,,表示:______.
(2)試用(1)中得出的結(jié)論解決如下題目:已知:,,為軸上的點,且使得為等腰三角形,請求出點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點,若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,CD、CE分別是△ABC的高和角平分線.
(1)若∠A=30°,∠B=50°,求∠ECD的度數(shù);
(2)試用含有∠A、∠B的代數(shù)式表示∠ECD(不必證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2,sin∠BCP=,求⊙O的半徑及△ACP的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com