【題目】已知:△ABC在坐標平面內(nèi),三個頂點的坐標分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)

(1)畫出△ABC向下平移4個單位,再向左平移1個單位得到的△A1B1C1 , 并直接寫出C1點的坐標;
(2)作出△ABC繞點A順時針方向旋轉90°后得到的△A2B2C2 , 并直接寫出C2點的坐標;
(3)作出△ABC關于原點O成中心對稱的△A3B3C3 , 并直接寫出B3的坐標.

【答案】
(1)

如圖1,C1(1,﹣2)


(2)

如圖2,C2(﹣1,1)


(3)

如圖3,B3(﹣3,﹣4)


【解析】(1)將A、B、C分別向下平移4個單位,再向左平移1個單位,順次連接即可得出△A1B1C1 , 即可得出寫出C1點的坐標;(2)根據(jù)旋轉的性質,找到各點的對應點,順次連接可得出△A2B2C2 , 即可寫出C2點的坐標;(3)根據(jù)關于原點對稱的性質,找到各點的對應點,順次連接可得出△A3B3C3 , 即可寫出C3點的坐標.
【考點精析】根據(jù)題目的已知條件,利用關于原點對稱的點的坐標的相關知識可以得到問題的答案,需要掌握兩個點關于原點對稱時,它們的坐標的符號相反,即點P(x,y)關于原點的對稱點為P’(-x,-y).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校準備組織290名學生進行野外考察活動,行李件數(shù)比學生人數(shù)的一半還少45.學校計劃租用甲、乙兩種型號的汽車共8輛,經(jīng)了解,甲種汽車每輛最多能載40人和10件行李,乙種汽車最多能載30人和20件行李.

(1)求行李有多少件?

(2)現(xiàn)計劃租用甲種汽車x輛,請你幫學校設計所有可能的租車方案.

(3)如果甲、乙兩種汽車每輛的租車費分別是2000元、1800元,請你選擇最省錢的一種租車方案,并求出至少的費用是多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=40°,∠APD=65°.
(1)求∠B的大;
(2)已知圓心0到BD的距離為3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點E.

(1)若∠B=20°,∠C=80°,求∠EAC和∠EAD的大。

(2)若∠C>∠B,由(1)的計算結果,你能發(fā)現(xiàn)∠EAD與∠C﹣∠B的數(shù)量關系嗎?寫出這個關系式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點O是邊長為2的正方形ABCD的中心.
(1)若函數(shù)y=x2+m的圖象過點C,求這個函數(shù)的解析式;并判斷其函數(shù)圖象是否過A點.
(2)若將(1)中的函數(shù)圖象先向右平移1個單位,再向上平移2個單位,直接寫出平移后函數(shù)的解析式和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,建立平面直角坐標系后的頂點均在格點上。

(1)寫出點的坐標

(2)畫出向上平移3個單位,向左平移5個單位得到的的圖像 ,并寫出頂點坐標;

(3)求.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P(33),點B、A分別在x軸正半軸和y軸正半軸上,∠APB90°,則OAOB________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,邊長為2的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABCO點順時針旋轉,當A點第一次落在直線y=x上時停止旋轉,旋轉過程中,AB邊交直線y=x于點MBC邊交x軸于點N(如圖).

(1)求邊OA在旋轉過程中所掃過的面積;
(2)旋轉過程中,當MNAC平行時,求正方形OABC旋轉的度數(shù);
(3)設△MBN的周長為p , 在旋轉正方形OABC的過程中,p值是否有變化?請證明你的結論.

查看答案和解析>>

同步練習冊答案