【題目】如圖,拋物線y=x2﹣4x﹣5x軸交于A,B兩點(電B在點A的右側(cè)),與y軸交于點C,拋物線的對稱軸與x軸交于點D.

(1)A,B,C三點的坐標(biāo)及拋物線的對稱軸.

(2)如圖1,點E(m,n)為拋物線上一點,且2<m<5,過點EEFx軸,交拋物線的對稱軸于點F,作EHx軸于點H,求四邊形EHDF周長的最大值.

(3)如圖2,點P為拋物線對稱軸上一點,是否存在點P,使以點P,B,C為頂點的三角形是直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

【答案】(1)A(﹣1,0)、B(5,0)、C(0,﹣5),x=2;(2);(3)存在,點P的坐標(biāo)為(2,3)或(2,﹣7)或(2,﹣6)或(2,1).

【解析】

(1)分別令x=0y=0代入拋物線的解析式中,可得A、B、C點坐標(biāo),根據(jù)對稱

性,可得對稱軸;

(2)根據(jù)矩形周長公式表示四邊形EHDF周長,并根據(jù)二次函數(shù)的頂點式可得四邊形EHDF

周長的最大值;

(3)分三種情況:

①當(dāng)∠CBP=90°時,如圖2,根據(jù)PDB∽△BOC,列比例式得:PD=DB,可得結(jié)論;

②當(dāng)∠BCP=90°時,如圖3,根據(jù)PCG∽△BDG,則=,可得PG的長,從而寫出P

的坐標(biāo);

③以AB為直徑畫圓,交對稱軸于P1、P2,如圖4,根據(jù)P1DB∽△CHP1,則,

列方程可得結(jié)論.

解:(1)當(dāng)x=0時,y=5

C0,﹣5),

當(dāng)y=0時,x24x5=0,

x1=5x2=1,

A(﹣10),B5,0),

由對稱性得:拋物線的對稱軸是:

2)如圖1,∵Em,n),且2m5,

E在第四象限,

EF=m2,EH=n=m2+4m+5,

設(shè)四邊形EHDF周長為W,

W=2EF+EH=2m2m2+4m+5=2m2+10m+6

∵﹣20,

∴當(dāng)時,四邊形EHDF周長的最大值是;

3)設(shè)P2y),

分三種情況:

①當(dāng)∠CBP=90°時,如圖2,

∴∠PBO=OCB,

∵∠PDB=COB=90°,

∴△PDB∽△BOC

PD=DB,

y=52=3,

P2,3);

②當(dāng)∠BCP=90°時,如圖3,

∵∠OBC=45°,

∴△GDB是等腰直角三角形,

BD=DG=3,

∵△PCG∽△BDG

PG=4,

P2,﹣7);

③以AB為直徑畫圓,交對稱軸于P1、P2,如圖4,則∠CP1B=CP2B=90°,

CCH⊥對稱軸于H,

∴△P1DB∽△CHP1,

,

y1=6(舍),y2=1

P12,1),

同理得:P22,﹣6);

綜上所述,點P的坐標(biāo)為(2,3)或(2,﹣7)或(2,﹣6)或(2,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了美化校園環(huán)境,計劃購進(jìn)桂花樹和黃桷樹兩種樹苗共200棵,現(xiàn)通過調(diào)查了解到:若購進(jìn)15棵桂花樹和6棵黃桷樹共需600元,若購進(jìn)12棵桂花樹和5棵黃桷樹共需490元.

(1)求購進(jìn)的桂花樹和黃桷樹的單價各是多少元?

(2)已知甲、乙兩個苗圃的兩種樹苗銷售價格和上述價格一樣,但有如下優(yōu)惠:甲苗圃:每購買一棵黃桷樹送兩棵桂花樹,購買的其它桂花樹打9折.乙苗圃:購買的黃桷樹和桂花樹都打7折.設(shè)購買黃桷樹x棵,y1和y2分別表示到甲、乙兩個苗圃中購買樹苗所需總費(fèi)用,求出y1和y2關(guān)于x的函數(shù)表達(dá)式;

(3)現(xiàn)在,學(xué)校根據(jù)實際需要購買的黃桷樹的棵數(shù)不少于35棵且不超過40棵,請設(shè)計一種購買方案,使購買的樹苗所花費(fèi)的總費(fèi)用最少.最少費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦放假期間,小明和小華準(zhǔn)備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同

(1)求小明選擇去白鹿原游玩的概率;

(2)用樹狀圖或列表的方法求小明和小華選擇去同一個地方游玩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機(jī)抽取2張,抽出的卡片上的數(shù)字恰好是兩個連續(xù)整數(shù)的概率是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教育局組織了落實十九大精神,立足崗位見行動教師演講比賽,根據(jù)各校初賽成績在小學(xué)組、中學(xué)組分別選出10名教師參加決賽,這些選手的決賽成績?nèi)鐖D所示:

根據(jù)上圖提供的信息,回答下列問題:

(1)請你把下面表格填寫完整:

團(tuán)體成績

眾數(shù)

平均數(shù)

方差

小學(xué)組

  

85.7

39.6

中學(xué)組

85

  

27.8

(2)考慮平均數(shù)與方差,你認(rèn)為哪個組的團(tuán)體成績更好些,并說明理由;

(3)若在每組的決賽選手中分別選出3人參加總決賽,你認(rèn)為哪個組獲勝的可能性大些?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點DABC的邊AB上,且ADCD

1)用直尺和圓規(guī)作∠BDC的平分線DE,交BC于點E(不寫作法,保留作圖痕跡);

2)在(1)的條件下,判斷DEAC的位置關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D是BC邊上一動點,點E,F(xiàn)分別在AB,AC邊上,連接AD,DE,DF,且∠ADE=∠ADF=60°.

小明通過觀察、實驗,提出猜想:在點D運(yùn)動的過程中,始終有AE=AF,小明把這個猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:利用AD是∠EDF的角平分線,構(gòu)造△ADF的全等三角形,然后通過等腰三角形的相關(guān)知識獲證.

想法2:利用AD是∠EDF的角平分線,構(gòu)造角平分線的性質(zhì)定理的基本圖形,然后通過全等三角形的相關(guān)知識獲證.

想法3:將△ACD繞點A順時針旋轉(zhuǎn)至△ABG,使得AC和AB重合,然后通過全等三角形的相關(guān)知識獲證.

請你參考上面的想法,幫助小明證明AE=AF.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點的坐標(biāo)為(3,4),軸于點,是線段上一點,且,點從原點出發(fā),沿軸正方向運(yùn)動,與直線交于,則的面積(

A.逐漸變大B.先變大后變小C.逐漸變小D.始終不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要設(shè)計一個等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為米.

用含的式子表示橫向甬道的面積;

當(dāng)三條甬道的面積是梯形面積的八分之一時,求甬道的寬;

根據(jù)設(shè)計的要求,甬道的寬不能超過米.如果修建甬道的總費(fèi)用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是,花壇其余部分的綠化費(fèi)用為每平方米萬元,那么當(dāng)甬道的寬度為多少米時,所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案