【題目】計算
(1)計算:( )﹣2+| ﹣2|+3tan30°
(2)先化簡,再求值: ﹣ ÷ ,其中x=﹣ .
【答案】
(1)
解:原式=4+2﹣ +3×
=6﹣ +
=6;
(2)
解:原式= ﹣
= +
=
= ,
當x=﹣ 時,原式= =﹣
【解析】(1)分別根據(jù)負整數(shù)指數(shù)冪的計算法則、絕對值的性質及特殊角的三角函數(shù)值計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;
(2)先算除法,再算加減,最后把x的值代入進行計算即可.本題考查的是分式的化簡求值,分式求值題中比較多的題型主要有三種:轉化已知條件后整體代入求值;轉化所求問題后將條件整體代入求值;既要轉化條件,也要轉化問題,然后再代入求值.
【考點精析】利用整數(shù)指數(shù)冪的運算性質和特殊角的三角函數(shù)值對題目進行判斷即可得到答案,需要熟知aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)y= (x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=3,
(1)求反比例函數(shù)y= 的解析式;
(2)求cos∠OAB的值;
(3)求經(jīng)過C、D兩點的一次函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(背景)如圖(a),△ABC與△ADE均是頂角為40°的等腰三角形,BC,DE分別是底邊,求證:BD=CE.
(探究)如圖(b),△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.
①∠AEB的度數(shù)為________;②線段BE與AD之間的數(shù)量關系是________.
(拓展)如圖(c),△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.
①求∠AEB的度數(shù);
②請直接寫出線段CM,AE,BE之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】莫小貝在圖1中畫出△ABC,其頂點A,B,C都是格點,同時構造正方形BDEF,使它的頂點都在格點上,且它的邊DE,EF分別經(jīng)過點C,A,她借助此圖求出了△ABC 的面積.
(1)莫小貝所畫的△ABC 的三邊長分別是AB=_______,BC=______,AC=______;△ABC 的面積為________.
(2)已知△ABC 中,AB=,BC=,AC=,請你根據(jù)莫小貝的思路,在圖2中畫出△ABC ,并直接寫出△ABC的面積_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次綜合實踐活動中,小明要測某地一座古塔AE的高度.如圖,已知塔基頂端B(和A、E共線)與地面C處固定的繩索的長BC為80m.她先測得∠BCA=35°,然后從C點沿AC方向走30m到達D點,又測得塔頂E的仰角為50°,求塔高AE.(人的高度忽略不計,結果用含非特殊角的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點E,CF⊥BC交BD于點F,且AE=CF.求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com