精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC的中點,兩邊PE,PF分別交AB,AC于點E,F,當∠EPF在△ABC內繞頂點P旋轉時(點E不與A,B重合).現給出以下四個結論:(1)AE=CF;(2)△EPF是等腰直角三角形;(3);(4)EF=AP.上述結論中始終正確的結論有(  )

A. 1個 B. 2個 C. 3個 D. 4個

【答案】C

【解析】根據等腰直角三角形的性質得:AP⊥BC,AP=BC,AP平分∠BAC.所以可證∠C=∠EAP;∠FPC=∠EPA;AP=PC.即證得△APE與△CPF全等.根據全等三角形性質判斷結論是否正確.

解:∵∠APE、∠CPF都是∠APF的余角,∴∠APE=∠CPF,∵AB=AC,∠BAC=90°,P是BC中點,∴AP=CP,∴∠PAE=∠PCF,在△APE與△CPF中,∠PAE=∠PCF,AP=CP,∠APE=∠CPF,∴△APE≌△CPF(ASA),同理可證△APF≌△BPE,∴AE=CF,△EPF是等腰直角三角形,S四邊形AEPF=S△ABC,①②③正確;而AP=BC,當EF不是△ABC的中位線時,則EF不等于BC的一半,EF=AP,∴故④不成立,

故選C.

“點睛”本題主要考查了等腰直角三角形的判定及性質的運用,三角形的中位線的性質的運用,全等三角形的判定及性質的運用,解答時證明三角形全等是關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】若關于x的方程x2-bx+6=0的一根是x=2,則另一根是( 。

A.x=-3B.x=-2C.x=2D.x=3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示:∠ABC的平分線BF△ABC∠ACB的相鄰外角的平分線CF相交于點F,過FDF∥BC,交ABD,交ACE

問:(1)圖中有幾個等腰三角形?為什么?

2BD,CEDE之間存在著什么關系?請證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一組數據2、5、4、3、5、4、5的中位數和眾數分別是(  )
A.3.5,5
B.4,4
C.4,5
D.4.5,4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a,b,c是三角形ABC的三邊,且b2+2ab=c2+2ac,則三角形ABC的形狀是三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90 ,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始沿BCA方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求線段PQ的長?

(2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB是等腰三角形?

(3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016湖南省岳陽市第24題)如圖,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).

(1)求拋物線F1所表示的二次函數的表達式;

(2)若點M是拋物線F1位于第二象限圖象上的一點,設四邊形MAOC和BOC的面積分別為S四邊形MAOC和SBOC,記S=S四邊形MAOCSBOC,求S最大時點M的坐標及S的最大值;

(3)如圖,將拋物線F1沿y軸翻折并復制得到拋物線F2,點A、B與(2)中所求的點M的對應點分別為A、B、M,過點M作MEx軸于點E,交直線AC于點D,在x軸上是否存在點P,使得以A、D、P為頂點的三角形與ABC相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016廣西省賀州市第26題)如圖,矩形的邊OA在x軸上,邊OC在y軸上,點B的坐標為(10,8),沿直線OD折疊矩形,使點A正好落在BC上的E處,E點坐標為(6,8),拋物線y=ax2+bx+c經過O、A、E三點.

(1)求此拋物線的解析式;

(2)求AD的長;

(3)點P是拋物線對稱軸上的一動點,當PAD的周長最小時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知C是AB的中點,D是AC的中點,E是BC的中點.

(1)若AB=18cm,求DE的長;(2)若CE=5cm,求DB的長.

查看答案和解析>>

同步練習冊答案