【題目】某股票經(jīng)紀人給他的投資者出了一道題,說明投資人的贏利凈賺情況(單位:元):
股票名稱 | 中國重工 | 五糧液 | 工商銀行 | 四川路橋 |
每股凈賺(元) | +23 | +1.5 | ﹣3 | ﹣(﹣2) |
股數(shù) | 500 | 1000 | 1000 | 500 |
請你計算一下,投資者到底是賠了還是賺了,賠了或賺了多少元?
科目:初中數(shù)學 來源: 題型:
【題目】某電器超市銷售每臺進價為120元、170元的A,B兩種型號的電風扇,如表所示是近2周的銷售情況:(進價、售價均保持不變,利潤=銷售收入一進貨成本)
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 6 | 5 | 2200元 |
第二周 | 4 | 10 | 3200元 |
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若超市再采購這兩種型號的電風扇共130臺,并且全部銷售完,該超市能否實現(xiàn)這兩批的總利潤為8010元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA=cm,OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動.設運動時間為t秒.
(1)用t的式子表示△OPQ的面積S;
(2)求證:四邊形OPBQ的面積是一個定值,并求出這個定值;
(3)當△OPQ與△PAB和△QPB相似時,拋物線y=x 2+bx+c經(jīng)過B、P兩點,過線段BP上一動點M作y軸的平行線交拋物線于N,當線段MN的長取最大值時,求直線MN把四邊形OPBQ分成兩部分的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點,現(xiàn)有經(jīng)過點A的直線l:y=kx+b1與y軸交于點C,與拋物線的另個交點為D.
(1)求拋物線的函數(shù)表達式;
(2)若點D在第二象限且滿足CD=5AC,求此時直線1的解析式;在此條件下,點E為直線1下方拋物線上的一點,求△ACE面積的最大值,并求出此時點E的坐標;
(3)如圖,設P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點Q在拋物線上,若以點A,D,P,Q為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點Q的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片沿EF折疊,使點C與點A重合,則下列結論錯誤的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC為矩形ABCD的對角線,將邊AB沿AE折疊,使點B落在AC上的點M處,將邊CD沿CF折疊,使點D落在AC上的點N處。
(1)求證:四邊形AECF是平行四邊形;
(2)若AB=6,AC=10,求四邊形AECF的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們環(huán)保意識的增強,“低碳出行”越來越為人們所倡導。小李要從家鄉(xiāng)到寧波工作,若乘飛機需要3小時,乘汽車需要9小時。這兩種交通工具每小時排放的二氧化碳總量為80千克,已知飛機每小時二氧化碳的排放量比汽車多46千克,若小李乘汽車來寧波,那么他此行與乘飛機相比將減少二氧化碳排放量多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩個大小一樣的直角三角形重疊在一起,將其中一個三角形沿著點B到點C的方向平移到△DEF的位置,AB=10,DH=4,平移距離為6,則陰影部分面積是_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com