【題目】已知點(diǎn)A(1,2a+2)x軸的距離是到y軸距離的2倍,則a的值為______.

【答案】02

【解析】

根據(jù)點(diǎn)到x軸的距離等于縱坐標(biāo)的長度,到y軸的距離等于橫坐標(biāo)的長度列出方程,然后求解即可.

∵點(diǎn)A(1,2a+2)x軸的距離是到y軸距離的2倍,
|2a+2|=2×1
2a+2=22a+2=2,
解得a=0a=2.
故答案為:02.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)中央精準(zhǔn)扶貧規(guī)劃,每年要減貧約11700000人,將數(shù)據(jù)11700000用科學(xué)記數(shù)法表示為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,比﹣2小的是(
A.﹣1
B.0
C.﹣3
D.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.

(1)求拋物線的表達(dá)式;

(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問PBC的面積S能否取得最大值?若能,請(qǐng)出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)跨越式發(fā)展,我市新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如表:

租金(單位:元/臺(tái)時(shí))

挖掘土石方量(單位:m3/臺(tái)時(shí))

甲型挖掘機(jī)

100

60

乙型挖掘機(jī)

120

80


(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過850元,又恰好完成每小時(shí)的挖掘量,那么共有幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+1的圖象與反比例函數(shù)y=x>0)的圖象交于點(diǎn)M,作MNx軸,N為垂足,且ON=1

(1)求反比例函數(shù)的解析式;

(2)根據(jù)圖象直接寫出不等式x+1>的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(﹣2ab)2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解方程2x2-4x=3時(shí),先把二次項(xiàng)系數(shù)化為1,然后方程的兩邊都應(yīng)加上_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(-1)2018的結(jié)果是____.

查看答案和解析>>

同步練習(xí)冊(cè)答案