列方程解應用題
某校組織學生去離校10千米的展覽館去參觀.初中學生步行出發(fā)1小時后,高中學生騎車出發(fā),反而比初中學生早到半小時.若騎車比步行每小時多行6千米,求初中學生步行的速度.
分析:設初中學生步行的速度為x千米/小時,則騎車的速度為(x+6)千米/小時,根據(jù)“初中學生步行出發(fā)1小時后,高中學生騎車出發(fā),反而比初中學生早到半小時”列方程求解即可.
解答:解:設初中學生步行的速度為x千米/小時,則騎車的速度為(x+6)千米/小時,
則根據(jù)題意得:
10
x
=
10
x+6
+1+0.5,
解得x1=4,x2=-10,
經(jīng)檢驗,x1=4,x2=-10都是原方程的根,
但x2=-10不符合題意,舍去,
∴x=4.
答:初中學生步行的速度為4千米/小時.
點評:本題考查分式方程的實際應用,是一個行程問題,主要利用路程=速度×時間來列出方程.分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

列方程(組)解應用題:“五•一”期間某校學生到相距學校10千米的“老年公寓”開展“獻愛心”活動,部分同學騎自行車從學校出發(fā),20分鐘后另一部分同學乘汽車從學校出發(fā),結(jié)果乘汽車的同學比騎自行車的同學提前10分鐘到達“老年公寓”.已知汽車速度是自行車速度的4倍,求兩種車的速度各是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程(組)解應用題.
某校1999年秋季初一年級和高一年級招生總數(shù)為500人,計劃2000年秋季初一年級招生數(shù)增加20%,高一年級招生數(shù)增加15%,這樣2000年秋季初一、高一年級招生總數(shù)比1999年將增加18%.求2000年秋季初一、高一年級的計劃招生數(shù)各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、列方程(組)解應用題:
某校準備從甲、乙兩家公司中選擇一家公司,為畢業(yè)班學生制作一批紀念冊,甲公司提出:收設計費與加工費共1500元,另外每冊收取材料費5元:乙公司提出:每冊收取材料費與加工費共8元,不收設計費.
(1)請你寫出甲公司的收費y1(元)與制作紀念冊的冊數(shù)x的函數(shù)關(guān)系式;
(2)請你寫出乙公司的收費y2(元)與制作紀念冊的冊數(shù)x的函數(shù)關(guān)系式;
(3)如果你去甲、乙兩公司訂做紀念冊,你認為選擇哪家公司價格優(yōu)惠?請寫出分析理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程(組)解應用題:
某校校慶活動中,花壇設計的一個造型需要擺放360盆鮮花,園林隊的工人實際擺放的速度是原計劃速度的1.2倍,結(jié)果提前1小時完成了任務,問工人實際每小時擺放多少盆鮮花?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程(組)或不等式(組)解應用題:
(1)某校的一間階梯教室,第1排的座位數(shù)為a,從第2排開始,每一排都比前一排增加b個座位.
1、請你在下表的空格里填寫一個適當?shù)拇鷶?shù)式:
第1排的座位數(shù) 第2排的座位數(shù) 第3排的座位數(shù) 第4排的座位數(shù)
a a+b a+2b
2、已知第4排有18個座位,第15排座位數(shù)是第5排座位數(shù)的2倍,求第1排有多少個座位?
(2)某校初一、初二兩年段學生參加社會實踐活動,原計劃租用48座客車若干輛,但還有24人無座位坐.
①設原計劃租用48座客車x輛,試用含x的代數(shù)式表示這兩個年段學生的總?cè)藬?shù);
②現(xiàn)決定租用60座客車,則可比原計劃租48座客車少2輛,且所租60座客車中有一輛沒有坐滿,但這輛車已坐的座位超過36位.請你求出該校這兩個年段學生的總?cè)藬?shù).

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�