【題目】某服裝店銷售一批襯衫,每件進(jìn)價元,開始以每件元的價格銷售,每星期能賣出件,后來因庫存積壓,決定降價銷售,經(jīng)兩次降價后的每件售價元,每星期能賣出件.

已知兩次降價百分率相同,求每次降價的百分率;

聰明的店主在降價過程中發(fā)現(xiàn),適當(dāng)?shù)慕祪r既可增加銷售又可增加收入,且每件襯衫售價每降低元,銷售會增加件,若店主想要每星期獲利元,應(yīng)把售價定為多少元?

【答案】應(yīng)把售價定為185元或175元.

【解析】

(1)根據(jù)題意可以列出相應(yīng)的方程,從而可以求得每次降價的百分率;

(2)根據(jù)題意可以列出相應(yīng)的方程,求出相應(yīng)的售價.

解:設(shè)每次降價的百分率為

解得,(舍去),

即每次降價的百分率是;

設(shè)店主將售價降價元,

解得,

,

即應(yīng)把售價定為元或元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標(biāo)是   ;

(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cmCD=12cm,且∠A=90°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ADAB,∠BAD的平分線交BC于點E,DHAE于點H,連接BH并延長交CD于點F,連接DEBF于點O,下列結(jié)論:①△ABE≌△AHD;②HECE;③HBF的中點;④ABHF;其中正確命題的個數(shù)為__________個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC、DC分別交于點G、F,H為CG的中點,連接DE、EH、DH、FH.下列結(jié)論:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若,則3S△EDH=13S△DHC,其中結(jié)論正確的有________(填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出將△ABC向右平移 2個單位長度后得到的△A1B1C1;

(2)作出將△ABC繞點O順時針旋轉(zhuǎn)90°后得到的△A2B2C2;

(3)求在(2)的旋轉(zhuǎn)變換中,線段BC掃過區(qū)域的面積(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,若,,以為邊作圓的內(nèi)接正多邊形,則這個正多邊形是________邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠B=∠CAB10cm,BC8cm,EAB的中點,點P在線段BC上以3cm/s的速度由點B向點C運動;同時,點Q在線段CA上由點C向點A運動,當(dāng)點Q的速度為多少時,能夠使BPECQP全等?

查看答案和解析>>

同步練習(xí)冊答案