【題目】長(zhǎng)方形的長(zhǎng)為a厘米,寬為b厘米,其中a>b,如果將原長(zhǎng)方形的長(zhǎng)和寬各增加3厘米,得到的新長(zhǎng)方形面積記為S1,如果將原長(zhǎng)方形的長(zhǎng)和寬分別減少2厘米,得到的新長(zhǎng)方形面積記為S2.
(1)若a、b為正整數(shù),請(qǐng)說明:S1與S2的差一定是5的倍數(shù);
(2)如果S1=2S2,求將原長(zhǎng)方形的長(zhǎng)和寬分別減少7厘米后得到的新長(zhǎng)方形面積;
(3)如果用一個(gè)面積為S1的長(zhǎng)方形和兩個(gè)面積為S2的長(zhǎng)方形恰好能沒有縫隙沒有重疊地拼成一個(gè)正方形,求a,b的值.
【答案】(1)見解析;(2)將原長(zhǎng)方形的長(zhǎng)和寬分別減少7厘米后得到的新長(zhǎng)方形面積為50平方厘米;(3)a,b的值分別為7和4.5
【解析】
(1)分別求出S1,S2,S1﹣S2的值,從而求解;(2)由S1=2S2,求得ab﹣7a﹣7b=1,然后求出將原長(zhǎng)方形的長(zhǎng)和寬分別減少7厘米后得到的新長(zhǎng)方形面積,最后整體代入求值即可;(3)由題意,根據(jù)拼接圖形的邊長(zhǎng)之間的等量關(guān)系,列方程組求解,根據(jù)問題的實(shí)際意義作出取舍即可.
解:(1)證明:由題意得:
S1=(a+3)(b+3)=ab+3(a+b)+9
S2=(a﹣2)(b﹣2)=ab﹣2(a+b)+4
∴S1﹣S2=ab+3(a+b)+9﹣ab+2(a+b)﹣4
=5(a+b)+5=5(a+b+1) ∴S1與S2的差一定是5的倍數(shù).
(2)∵S1=2S2,
∴ab+3a+3b+9=2(ab﹣2a﹣2b+4)
∴ab﹣7a﹣7b-1=0
∴ab﹣7a﹣7b=1
∵將原長(zhǎng)方形的長(zhǎng)和寬分別減少7厘米后得到的新長(zhǎng)方形面積為:
(a﹣7)(b﹣7)=ab﹣7a﹣7b+49=1+49=50
∴將原長(zhǎng)方形的長(zhǎng)和寬分別減少7厘米后得到的新長(zhǎng)方形面積為50平方厘米.
(3)由題意可得方程組:
①
解得
②
解得:故該組方程組的解不符合題意
∴a,b的值分別為7和4.5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的代數(shù)式x2+bx+c,設(shè)代數(shù)式的值為y.下表中列出了當(dāng)x分別取﹣1,0,1,2,3,4,5,…m,m+1…時(shí)對(duì)應(yīng)的y值.
x | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | m | m+1 | |||
y | 10 | 5 | 2 | 1 | 2 | 5 | n | p | q |
(1)表中n的值為 ;
(2)當(dāng)x= 時(shí),y有最小值,最小值是 ;
(3)比較p與q的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點(diǎn)C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點(diǎn)E是y軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、M、N分別和點(diǎn)O、B、E對(duì)應(yīng)),并且點(diǎn)M、N都在拋物線上,作MF⊥x軸于點(diǎn)F,若線段MF:BF=1:2,求點(diǎn)M、N的坐標(biāo);
③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)該玩具銷售單價(jià)定為多少元時(shí),商場(chǎng)能獲得12000元的銷售利潤(rùn)?
(2)該玩具銷售單價(jià)定為多少元時(shí),商場(chǎng)獲得的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于46元,且商場(chǎng)要完成不少于500件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx(a≠0)中自變量x和函數(shù)值y的部分對(duì)應(yīng)值如下表:
x | … | ﹣2.5 | ﹣2 | ﹣1 | 0 | 0.5 | … |
y | … | ﹣5 | 0 | 4 | 0 | ﹣5 | … |
(1)求二次函數(shù)解析式,并寫出頂點(diǎn)坐標(biāo);
(2)在直角坐標(biāo)系中畫出該拋物線的圖象;
(3)若該拋物線上兩點(diǎn)A(x1,y1)、B(x2,y2)的橫坐標(biāo)滿足x1<x2<﹣1,試比較y1與y2的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,.
(1)尺規(guī)作圖(保留作圖痕跡,不寫作法與證明):
①作的平分線交邊于點(diǎn);
②過點(diǎn)作于點(diǎn);
(2)在(1)所畫圖中,若,,則長(zhǎng)為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進(jìn)校園”活動(dòng),某校團(tuán)委組織八年級(jí)100名學(xué)生進(jìn)行“經(jīng)典誦讀”選拔賽,賽后對(duì)全體參賽學(xué)生的成績(jī)進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表。
組別 | 分?jǐn)?shù)段 | 頻次 | 頻率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
請(qǐng)根據(jù)所給信息,解答以下問題:
(1)表中a=___,b=___;
(2)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中B組對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績(jī),其中包括來自同一班級(jí)的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級(jí)比賽,請(qǐng)用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個(gè)交點(diǎn)為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com