【題目】(本小題滿分12分)

已知:把RtABC和RtDEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.ACB = EDF = 90°,DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm

如圖(2),DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CBABC勻速動(dòng),在DEF移動(dòng)的同時(shí),點(diǎn)P從ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)動(dòng)時(shí)間為t(s)(0<t<4.5).

解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?

(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由.

(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

【答案】

(1)t=2

(2)當(dāng)t = 3時(shí),y最小=

(3)當(dāng)t = 1s,點(diǎn)P、Q、F三點(diǎn)在同一條直線上

【解析】

解:1)點(diǎn)A在線段PQ的垂直平分線上,

AP = AQ.

∵∠DEF = 45°,ACB = 90°,DEF+ACBEQC = 180°,

∴∠EQC = 45°.

∴∠DEF =EQC.

CE = CQ.

由題意知:CE = tBP =2 t,

CQ = t.

AQ = 8t.

RtABC中,由勾股定理得:AB = 10 cm .

AP = 10-2 t.

10-2 t = 8t.

解得:t = 2.

答:當(dāng)t = 2 s時(shí),點(diǎn)A在線段PQ的垂直平分線上. 4

(2)過(guò)P作,交BE于M,.

RtABCRtBPM中,,

. PM = .

BC = 6 cm,CE = t BE = 6-t.

y = SABCSBPE ==

= = .

,拋物線開(kāi)口向上.

當(dāng)t = 3時(shí),y最小=.

答:當(dāng)t = 3s時(shí),四邊形APEC的面積最小,最小面積為cm2.8

(3)假設(shè)存在某一時(shí)刻t,使點(diǎn)P、Q、F三點(diǎn)在同一條直線上.

過(guò)P作,交ACN,

.

∴△PAN BAC.

.

.

,.

NQ = AQAN,

NQ = 8t-() =

∵∠ACB = 90°,B、C(E)、F在同一條直線上,

∴∠QCF = 90°,QCF = PNQ.

∵∠FQC = PQN,

∴△QCFQNP .

. .

解得:t = 1.

答:當(dāng)t = 1s,點(diǎn)P、Q、F三點(diǎn)在同一條直線上. 12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店在節(jié)日期間開(kāi)展優(yōu)惠促銷活動(dòng):購(gòu)買原價(jià)超過(guò)500元的商品,超過(guò)500元的部分可以享受打折優(yōu)惠.若購(gòu)買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)的函數(shù)關(guān)系的圖像如圖所示,則超過(guò)500元的部分可以享受的優(yōu)惠是( )

A. 打六折B. 打七折C. 打八折D. 打九折

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列式子中,在自變量取值范圍內(nèi),y不可以表示是x的函數(shù)的是(  )

A.y=3x5B.y=C.D.y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說(shuō)法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點(diǎn)A(3,0),與y軸交于點(diǎn)C.以直線x=1為對(duì)稱軸的拋物線y=ax2+bx+c(a,bc為常數(shù),且a0)經(jīng)過(guò)AC兩點(diǎn),并與x軸的正半軸交于點(diǎn)B

(1)m的值及拋物線的函數(shù)表達(dá)式;

(2)P是拋物線對(duì)稱軸上一動(dòng)點(diǎn),△ACP周長(zhǎng)最小時(shí),求出P的坐標(biāo);

(3)是否存在拋物在線一動(dòng)點(diǎn)Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點(diǎn)Q的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(4)(2)的條件下過(guò)點(diǎn)P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1)M2(x2,y2)兩點(diǎn),試問(wèn)是否為定值,如果是,請(qǐng)直接寫(xiě)出結(jié)果,如果不是請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EAB的中點(diǎn),FBC上任意一點(diǎn),把BEF沿直線EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′落在對(duì)角線AC上,則與∠FEB一定相等的角(不含∠FEB)有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:

①一顆質(zhì)地均勻的骰子已連續(xù)拋擲了次,其中,拋擲出點(diǎn)的次數(shù)最少,則第次一定拋擲出點(diǎn).

②可能性很小的事件在一次實(shí)驗(yàn)中也有可能發(fā)生.

③天氣預(yù)報(bào)說(shuō)明天下雨的概率是,意思是說(shuō)明天將有一半時(shí)間在下雨.

④拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等.

正確的是________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的方格紙中,有一個(gè)以格點(diǎn)為頂點(diǎn)的ABC

1ABC的形狀是 

2)利用網(wǎng)格線畫(huà)ABC,使它與ABC關(guān)于直線l對(duì)稱.

3)在直線l上求作點(diǎn)P使AP+CP的值最小,則AP+CP的最小值= 

查看答案和解析>>

同步練習(xí)冊(cè)答案