【題目】列方程解應(yīng)用題
從甲市到乙市乘坐高鐵路程為150千米,乘坐普通列車的路程為250千米。高鐵的平均速度是普通列車平均速度的3倍,高鐵的乘車時間比普通列車的乘車時間縮短了2小時,高鐵的平均速度是每小時多少千米?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點,點在原點的左側(cè),點的坐標(biāo)為,與軸交于點,點是直線下方的拋物線上一動點.
求這個二次函數(shù)的表達(dá)式.
連接、,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標(biāo);若不存在,請說明理由.
當(dāng)點運動到什么位置時,四邊形的面積最大?求出此時點的坐標(biāo)和四邊形的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,它們的對稱軸與x軸交于點N,過頂點M作ME⊥y軸于點E,連結(jié)BE交MN于點F.已知點A的坐標(biāo)為(﹣1,0).
(1)求該拋物線的解析式及頂點M的坐標(biāo);
(2)求△EMF與△BNF的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,將任意兩點P(x1,y1)與Q(x2,y2)之間的“直距”定義為:DPQ=|x1﹣x2|+|y1﹣y2|.
例如:點M(1,﹣2),點N(3,﹣5),則DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知點A(1,0)、點B(﹣1,4).
(1)則DAO= ,DBO= ;
(2)如果直線AB上存在點C,使得DCO為2,請你求出點C的坐標(biāo);
(3)如果⊙B的半徑為3,點E為⊙B上一點,請你直接寫出DEO的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點:
甲:對稱軸為直線x=4
乙:與x軸兩個交點的橫坐標(biāo)都是整數(shù).
丙:與y軸交點的縱坐標(biāo)也是整數(shù),且以這三個點為頂點的三角形面積為3.請你寫出滿足上述全部特點的一個二次函數(shù)解析式__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為“鍋線”,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖①所示(圖②是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為.
求和的解析式;
如果炒菜鍋時的水位高度是,求此時水面的直徑;
如果將一個底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,CD⊥AB于點D,BD=9,BC=15,AC=20.
(1)求CD的長;
(2)求AB的長;
(3)判斷△ABC的形狀.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com