【題目】如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),連接,將沿折疊,使點(diǎn)落在點(diǎn)處.當(dāng)為直角三角形時(shí),__.
【答案】或5
【解析】
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如圖1所示.連結(jié)AC,先利用勾股定理計(jì)算出AC=13,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即ΔABE沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=5,可計(jì)算出CB′=8,設(shè)BE=a,則EB′=a,CE=12-a,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出a.②當(dāng)點(diǎn)B′落在AD邊上時(shí),如圖2所示.此時(shí)ABEB′為正方形.
當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如圖1所示,
連結(jié)AC,
在Rt△ABC中,AB=5,BC=12,
∴AC==13,
∵將ΔABE沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
∴∠AB′E=∠B=90°,
當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,
∴點(diǎn)A、B′、C共線,即將ΔABE沿AE折疊,使點(diǎn)B落在對角線AC上的點(diǎn)B′處,設(shè):,則,,
,
由勾股定理得:,
解得:;
②當(dāng)點(diǎn)B′落在AD邊上時(shí),如圖2所示,
此時(shí)ABEB′為正方形,∴BE=AB=5,
綜上所述,BE的長為或5,
故答案為:或5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量路燈(OS)的高度,把一根長1.5米的竹竿(AB)豎直立在水平地面上,測得竹竿的影子(BC)長為1米,然后拿竹竿向遠(yuǎn)離路燈方向走了3.2米(BB‘),再把竹竿豎立在地面上,測得竹竿的影長(B‘C‘)為1.8米,求路燈離地面的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,PA、PB為⊙O的切線,M、N是PA、AB的中點(diǎn),連接MN交⊙O點(diǎn)C,連接PC交⊙O于D,連接ND交PB于Q,求證:MNQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,觀察數(shù)軸,請回答:
(1)點(diǎn)C與點(diǎn)D的距離為______ ,點(diǎn)B與點(diǎn)D的距離為______ ;
(2)點(diǎn)B與點(diǎn)E的距離為______ ,點(diǎn)A與點(diǎn)C的距離為______ ;
發(fā)現(xiàn):在數(shù)軸上,如果點(diǎn)M與點(diǎn)N分別表示數(shù)m,n,則他們之間的距離可表示為 ______(用m,n表示)
(3)利用發(fā)現(xiàn)的結(jié)論解決下列問題: 數(shù)軸上表示x的點(diǎn)P與B之間的距離是1,則 x 的值是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BC,AC,過點(diǎn)C作直線CD⊥AB于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),直線CE交⊙O于點(diǎn)F,連接BF與直線CD延長線交于點(diǎn)G.求證:BC2=BG·BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為的邊的中點(diǎn),分別以、為斜邊作和,且,.
(1)求證:.
(2)探究:與的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=12,∠BCD=120°,求四邊形AODE的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上對應(yīng)的數(shù)為-2.
(1)點(diǎn)B在點(diǎn)A右邊距離A點(diǎn)4個(gè)單位長度,則點(diǎn)B所對應(yīng)的數(shù)是_____.
(2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn)B以每秒3個(gè)單位長度沿?cái)?shù)軸向右運(yùn)動(dòng).現(xiàn)兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到-6的點(diǎn)處時(shí),求A、B兩點(diǎn)間的距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)以原速沿?cái)?shù)軸向左運(yùn)動(dòng),經(jīng)過多長時(shí)間A、B兩點(diǎn)相距4個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E為矩形的邊CD上的任意一點(diǎn),點(diǎn)P為線段AE的中點(diǎn),連接BP并延長與邊AD交于點(diǎn)F,點(diǎn)M為邊CD上的一點(diǎn),且CM=DE,連接FM.
(1)依題意補(bǔ)全圖形;
(2)求證∠DMF=∠ABF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com