【題目】如圖,數(shù)軸上的A,B,C三點所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點O的位置應該在(

A.A的左邊

B.A與點B之間

C.B與點C之間(靠近點B)

D.C的右邊

【答案】C

【解析】

一個數(shù)的絕對值表示這個數(shù)距離原點的距離,題干給出,則離原點最遠為點A,其次為點C,最后為點B.根據(jù)這個規(guī)律去依次判斷選項中的答案.

A.原點在點A在左邊時,此時A離原點最近,則a的絕對值最小,不符合.

B.原點在點A與點B之間時,此時C點離原點最遠,則c的絕對值最大,不符合.

C.原點在點B與點C之間(靠近點B)時,此時A最遠,C 次之,B最近,如圖所示:

符合.

D. 原點在點C的右邊時,最此時C點離原點最近,則c的絕對值最小,不符合.

故答案為:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某民營企業(yè)準備用14000元從外地購進A、B兩種商品共600件,其中A種商品的成本價為20元,B種商品的成本價為30元.

(1)該民營企業(yè)從外地購得A、B兩種商品各多少件?

(2)該民營企業(yè)計劃租用甲、乙兩種貨車共6輛,一次性將A、B兩種商品運往某城市,已知每輛甲種貨車最多可裝A種商品110件和B種商品20件;每輛乙種貨車最多可裝A種商品30件和B種商品90件,問安排甲、乙兩種貨車有幾種方案?請你設計出具體的方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新的交通法規(guī)實施后,駕校的考試規(guī)則也發(fā)生了變化,考試共設四個科目:科目1、科目2、科目3和科目4,以下簡記為:1、2、3、4.四個科目考試在同一地點進行,但每個學員每次只能夠參加一個科目考試.在某次考試中,對該考點各科目考試人數(shù)進行了調(diào)查統(tǒng)計,并根據(jù)調(diào)查結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:

(1)本次被調(diào)查的學員共有 人;在被調(diào)查者中參加“科目3”測試的有 人;將條形統(tǒng)計圖補充完整;

(2)該考點參加“科目4”考試的學員里有3位是教師,某新聞部門準備在該考點參加“科目4”考試的學員中隨機選出2位,調(diào)查他們對新規(guī)的了解情況,請你用列表法或畫樹狀圖的方法求出所選兩位學員恰好都是教師的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題:

(1) (8) +3=__   (2) 36= __   (3) 3×2= __   (4) 9÷(3) =__  

(5) 0×(2019) =__   (6)    (7) (2)2×32=    (8) (2)3÷(1)5 =   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是(

A. AP=BP,則點P是線段的中點 B. 若點C在線段AB上,則AB=AC+BC

C. AC+BC>AB,則點C一定在線段AB D. 兩點之間,線段最短

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某圖書借閱室提供兩種租書方式:一種是零星租書,每冊收費 1 元;另一種是會員租書,會員卡費用為每季度10 元,租書費每冊 0.5 元.小亮經(jīng)常來租書,若每季度租書數(shù)量為 x 冊.

1)寫出零星租書方式每季度應付金額 y1(元)與租書數(shù)量 x(冊)之間的函數(shù)關系式;

2)寫出會員卡租書方式每季度應付金額 y2(元)與租書數(shù)量 x(冊)之間的函數(shù)關系式;

3)請分析小亮選取哪種租書方式更合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教師節(jié)當天,出租車司機小王在東西向的街道上免費接送教師,規(guī)定向東為正,向西為負,當天出租車的行程如下(單位:千米):,,,,

將最后一名老師送到目的地時,小王距出發(fā)地多少千米?方位如何?

若汽車耗油量為/千米,則當天耗油多少升?若汽油價格為/升,則小王共花費了多少元錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(9分)已知:如圖,在平面直角坐標系中,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點和點和.

(1)求這兩個函數(shù)的表達式;

(2)觀察圖象,當時,直接寫出自變量的取值范圍;

(3)求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教材的課題學習要求同學們用一張正三角形紙片折疊成正六邊形,小明同學按照如下步驟折疊:

請你根據(jù)小明同學的折疊方法,回答以下問題: 如果設正三角形ABC的邊長為a,那么 ______ 用含a的式子表示;

根據(jù)折疊性質(zhì)可以知道的形狀為______ 三角形;

請同學們利用、的結(jié)論,證明六邊形KHGFED是一個六邊形.

查看答案和解析>>

同步練習冊答案