【題目】如圖,在中,,,,點(diǎn)D、E分別是BC、AD的中點(diǎn),交CE的延長線于則四邊形AFBD的面積為______.
【答案】12
【解析】分析:由于AF∥BC,從而易證△AEF≌△DEC(AAS),所以AF=CD,從而可證四邊形AFBD是平行四邊形,所以S四邊形AFBD=2S△ABD,又因?yàn)?/span>BD=DC,所以S△ABC=2S△ABD,所以S四邊形AFBD=S△ABC,從而求出答案.
詳解:∵AF∥BC,
∴∠AFC=∠FCD,
在△AEF與△DEC中,
∴△AEF≌△DEC(AAS).
∴AF=DC,
∵BD=DC,
∴AF=BD,
∴四邊形AFBD是平行四邊形,
∴S四邊形AFBD=2S△ABD,
又∵BD=DC,
∴S△ABC=2S△ABD,
∴S四邊形AFBD=S△ABC,
∵∠BAC=90°,AB=4,AC=6,
∴S△ABC=ABAC=×4×6=12,
∴S四邊形AFBD=12.
故答案為:12
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的點(diǎn),∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AEF=80°,且∠A=x°,∠C=y°,∠F=z°.若+|y-80-m|+|z-40|=0(m為常數(shù),且0<m<100)
(1) 求∠A、∠C的度數(shù)(用含m的代數(shù)式表示)
(2) 求證:AB∥CD
(3) 若∠A=40°,∠BAM=20°,∠EFM=10°,直線AM與直線FM交于點(diǎn)M,直接寫出∠AMF的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動點(diǎn)P從點(diǎn)A出發(fā),沿AC方向勻速運(yùn)動到終點(diǎn)C,動點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動到終點(diǎn)B.已知P,Q兩點(diǎn)同時出發(fā),并同時到達(dá)終點(diǎn),連接MP,MQ,PQ.在整個運(yùn)動過程中,△MPQ的面積大小變化情況是( )
A.一直增大
B.一直減小
C.先減小后增大
D.先增大后減少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進(jìn),1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:
(1)港口A與小島C之間的距離;
(2)甲輪船后來的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化肥廠去年四月份生產(chǎn)化肥500噸,因管理不善,五月份的產(chǎn)量減少了,從六月起強(qiáng)化管理,該廠產(chǎn)量逐月上升,七月份產(chǎn)量達(dá)到648噸.
該廠五月份的產(chǎn)量為______噸;直接填結(jié)果
求六、七兩月產(chǎn)量的平均增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列四個條件:①AB=BC,②∠ABC=90,③AC=BD,④AC⊥BD.從中選取兩個作為補(bǔ)充條件,使□BCD為正方形(如圖).現(xiàn)有下列四種選法,其中錯誤的是 ( )
A. ②③ B. ②④ C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=8,P為AD的中點(diǎn),將△ABP沿BP翻折至△EBP(點(diǎn)A落到點(diǎn)E處),連接DE,則圖中與∠APB相等的角的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com