【題目】從一定高度落下的圖釘,落地后可能圖釘針尖著地.也可能圖釘針尖不著地,雨薇同學在相同條件下做了這個實驗.并將數(shù)據(jù)記錄如下:
實驗次數(shù)n | 200 | 400 | 600 | 800 | 1000 | … |
針尖著地頻數(shù)m | 84 | 176 | 280 | 362 | 451 | … |
針尖著地頻率 | 0.420 | 0.440 | 0.467 | 0.453 | 0.451 | … |
(1)觀察針尖著地的頻率是否穩(wěn)定,若穩(wěn)定,請寫針尖著地頻率的常數(shù)______(精確到0.01);若不穩(wěn)定,請說明理由.
(2)假如小明同學在相同條件下做了此實驗10000次,估計圖釘針尖著地的次數(shù)大約是多少.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,號樓在號樓的南側(cè),兩樓高度均為樓間距為.冬至日正午,太陽光線與水平面所成的角為.號樓在號樓墻面上的影高為,春分日正午,太陽光線與水平面所成的角為,號樓在號樓墻面上的影高為.已知.
(1)求樓間距;
(2)若號樓共層,層高均為則點位于第幾層? ( 參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四位同學在研究函數(shù)y=x2+bx+c(b,c是常數(shù))時,甲發(fā)現(xiàn)當x=1時,函數(shù)有最小值;乙發(fā)現(xiàn)﹣1是方程x2+bx+c=0的一個根;丙發(fā)現(xiàn)函數(shù)的最小值為3;丁發(fā)現(xiàn)當x=2時,y=4,已知這四位同學中只有一位發(fā)現(xiàn)的結(jié)論是錯誤的,則該同學是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一個正整數(shù)x的首位數(shù)字與末位數(shù)字先立方再求和得到一個新數(shù)(若x<10,則直接將x立方得到新數(shù)),定義為M(x)運算.例如:M(2)=23=8,M(31)=33+13=28,M(102)=13+23=9,規(guī)定對某個正整數(shù)x進行第一次M(x)運算記作M1(x),第二次M(x)運算記作M2(x),……,第n次M(x)運算記作Mn(x),例如:M1(2)=23=8,M2(2)=83=512,M3(2)=53+23=133.
(1)求M2(3)和M2017(3);
(2)若M5n(3)=520,求正整數(shù)n的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx﹣3的圖象與x軸分別相交于A、B兩點,點B的坐標為(3,0),與y軸的交點為C,動點T在射線AB上運動,在拋物線的對稱軸l上有一定點D,其縱坐標為2,l與x軸的交點為E,經(jīng)過A、T、D三點作⊙M.
(1)求二次函數(shù)的表達式;
(2)在點T的運動過程中,
①∠DMT的度數(shù)是否為定值?若是,請求出該定值:若不是,請說明理由;
②若MT=AD,求點M的坐標;
(3)當動點T在射線EB上運動時,過點M作MH⊥x軸于點H,設(shè)HT=a,當OH≤x≤OT時,求y的最大值與最小值(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的正方形AOCD的頂點A、C分別在y軸和x軸上,點P的坐標為(2,0),以點P為圓心,OP的長為半徑向正方形內(nèi)部作一半圓,交線段DF于點F,線段DF的延長線交y軸于點E,DF=DC.
(1)求證:DF是半圓P的切線;
(2)求線段DF所在直線的解析式;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在△ABC中,∠ACB=90°,AC=BC過點C的射線CF交邊AB于點F,AD⊥CF于點D,BE⊥CF于點E,AD=3,BE=1.
(1)求證:△ADC≌△CEB.
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展以“學習朱子文化,弘揚理學思想”為主題的讀書月活動,并向?qū)W生征集讀后感,學校將收到的讀后感篇數(shù)按年級進行統(tǒng)計,繪制了以下兩幅統(tǒng)計圖(不完整).
據(jù)圖中提供的信息完成以下問題
(1)扇形統(tǒng)計圖中“八年級”對應(yīng)的圓心角是 °,并補全條形統(tǒng)計圖;
(2)經(jīng)過評審,全校有4篇讀后感榮獲特等獎,其中有一篇來自七年級,學校準備從特等獎讀后感中任選兩篇在校廣播電臺上播出,請利用畫樹狀圖或列表的方法求出七年級特等獎讀后感被校廣播電臺播出的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:將矩形紙片ABCD折疊,使點A與點C重合(點D與D'為對應(yīng)點),折痕為EF,連接AF.
(1)如圖1,求證:四邊形AECF為菱形;
(2)如圖2,若FC=2DF,連接AC交EF于點O,連接DO、D'O,在不添加任何輔助線的情況下,請直接寫出圖2中所有等邊三角形.
(圖1) (圖2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com