【題目】如圖所示,在△ABC中,∠A=90°,BD是∠ABC的平分線,DE是BC的垂直平分線,則∠C=

【答案】30°
【解析】解:∵DE是BC的垂直平分線,
∴BE=EC,DE⊥BC,
∴∠CED=∠BED,
∴△CED≌△BED,
∴∠C=∠DBE,
∵∠A=90°,BD是∠ABC的平分線,
∴∠ABE=2∠DBE=2∠C,
∴∠C=30°.
所以答案是:30°.
【考點精析】認真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上),還要掌握線段垂直平分線的性質(zhì)(垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD交于點O,∠1=∠2,∠3:∠1=8:1,求∠4的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有(

A.6個
B.5個
C.4個
D.3個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張大伯從報社以每份0.4元的價格購進了a份報紙,以每份0.5元的價格售出了b份報紙,剩余的以每份0.2元的價格退回報社,則張大伯賣報收入元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2xy=3,用含x的式子表示y,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x=2是關于x的一元二次方程x2-ax+6=0的一個解,則a的值為(。

A.-5B.-4C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,△ABC中,D是BC邊上一點,則△ABD與△ADC有一個相同的高,它們的面積之比等于相應的底之比,記為(△ABD、△ADC的面積分別用記號、表示).現(xiàn)有,則

(2)如圖2,△ABC中,E、F分別是BC、AC邊上一點,且有, ,AE與BF相交于點G.現(xiàn)作EH∥BF交AC于點H.依次求、、的值.

(3)如圖3,△ABC中,點P在邊AB上,點M、N在邊AC上,且有, ,

BM、BN與CP分別相交于點R、Q.現(xiàn)已知△ABC的面積為1,求△BRQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在太陽光下行走,同一時刻他們的身高與其影長的關系是___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.

(1)當∠BQD=30°時,求AP的長;
(2)證明:在運動過程中,點D是線段PQ的中點;
(3)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

同步練習冊答案