閱讀下列材料,并回答問題.
畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且52+122=132.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則a2+b2=c2,這個結(jié)論就是著名的勾股定理.
請利用這個結(jié)論,完成下面的活動:
(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為______.
(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請你寫出有以上規(guī)律的第⑤組勾股數(shù):______.
(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長度.

(4)如圖,點A在數(shù)軸上表示的數(shù)是______,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)數(shù)學(xué)公式的B點(保留作圖痕跡).

解:(1)=10…;

(2)第5組勾股數(shù)為:11,60,61…

(3)∵AD⊥BC
∴∠ADC=∠BDE=90°
在Rt△ADC和Rt△BDE中
∴Rt△ADC≌Rt△BDE…
∴AD=BD
∵AD2+CD2=AC2
∴AD2=AC2-CD2=9-1=8…


(4)…,圖略(正確標(biāo)出點B)…

分析:(1)根據(jù)“在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方”,可得出這個直角三角形斜邊長;
(2)先找出勾股數(shù)的規(guī)律:①以上各組數(shù)均滿足a2+b2=c2;②最小的數(shù)(a)是奇數(shù),其余的兩個數(shù)是連續(xù)的正整數(shù);③最小奇數(shù)的平方等于另兩個連續(xù)整數(shù)的和,
如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…,由以上特點我們可第⑤組勾股數(shù):112=121=60+61;
(3)根據(jù)勾股定理先求得AD,再證明△ACD≌△BED,從而得出BD的長度.
(4)由勾股定理得出矩形的對角線的長,再由點A的位置可得出點A所表示的數(shù),再以2,1分別為斜邊和直角邊,且另一直角邊為
點評:本題考查了勾股定理、直角三角形的全等,勾股數(shù)以及勾股定理的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并回答問題:∵
1
1×3
=
1
2
(1-
1
3
),
1
3×5
=
1
2
(
1
3
-
1
5
),
1
5×7
=
1
2
(
1
5
-
1
7
),…

1
1×3
+
1
3×5
+
1
5×7
+…+
1
19×21

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
19
-
1
21
)

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
19
-
1
21
)

=
1
2
(1-
1
21
)

=
10
21

(1)
1
1×3
+
1
3×5
+
1
5×7
+…+
1
99×101
=
 
 
(2)利用類似方法,可求得:
1
1×4
+
1
4×7
+
1
7×10
+…+
1
19×22
=
 

(3)受以上啟發(fā),請你解下列方程:
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
x+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下列材料,并回答下列問題:
1
2+
2
=
2-
2
(2+
2
)(2-
2
)
=
2-
2
2
=1-
2
2
1
3
2
+2
3
=
3
2
-2
3
(3
2
+2
3
)(3
2
-2
3
)
=
3
2
-2
3
6
=
2
2
-
3
3
1
4
3
+3
4
=
4
3
-3
4
(4
3
+3
4
)(4
3
-3
4
)
=
4
3
-3
4
12
=
3
3
-
4
4
=
3
3
-
1
2

(1)請你依照材料的方法計算
1
5
4
+4
5

(2)利用你探索的規(guī)律計算:
1
2+
2
+
1
3
2
+2
3
+
1
4
3
+3
4
1
25
24
+24
25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并回答問題
計算機利用的是二進(jìn)制數(shù),它共有兩個數(shù)碼:0,1;將一個十進(jìn)制的數(shù)轉(zhuǎn)化為二進(jìn)制數(shù),只需把該數(shù)寫成若干個的數(shù)的和,依次寫出1或0即可.
例如十進(jìn)制數(shù)19可以按下述方法轉(zhuǎn)化為二進(jìn)制數(shù):19=16+2+1=1×24+0×23+0×22+1×21+1×20=10011.
二進(jìn)制數(shù)110110可以轉(zhuǎn)換成十進(jìn)制數(shù)為:110110=1×25+1×24+0×23+1×22+1×21+0×20=54.
(1)將86化成二進(jìn)制;           
(2)將1011101化成十進(jìn)制.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并回答問題.
畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且52+122=132.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則a2+b2=c2,這個結(jié)論就是著名的勾股定理.
請利用這個結(jié)論,完成下面的活動:
(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為
10
10

(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請你寫出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長度.

(4)如圖,點A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)
3
的B點(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列材料,并回答問題 
計算機利用的是二進(jìn)制數(shù),它共有兩個數(shù)碼:0,1;將一個十進(jìn)制的數(shù)轉(zhuǎn)化為二進(jìn)制數(shù),只需把該數(shù)寫成若干個的數(shù)的和,依次寫出1或0即可.例如十進(jìn)制數(shù)19可以按下述方法轉(zhuǎn)化為二進(jìn)制數(shù):19=16+2+1=1×24+0×23+0×22+1×21+1×20=10011.二進(jìn)制數(shù)11011可以轉(zhuǎn)換成十進(jìn)制數(shù)為:110110=1×25+1×24+0×23+1×22+1×21+1×20=56
(1)將104化成二進(jìn)制;
(2)將1011101化成十進(jìn)制.

查看答案和解析>>

同步練習(xí)冊答案