【題目】如圖,已知等邊△ABC的邊長(zhǎng)為8,點(diǎn)PAB邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、B不重合),直線l是經(jīng)過(guò)點(diǎn)P的一條直線,把△ABC沿直線l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B’.

1)如圖1,當(dāng)PB=4時(shí),若點(diǎn)B’恰好在AC邊上,則AB’的長(zhǎng)度為_____

2)如圖2,當(dāng)PB=5時(shí),若直線l//AC,則BB’的長(zhǎng)度為 ;

3)如圖3,點(diǎn)PAB邊上運(yùn)動(dòng)過(guò)程中,若直線l始終垂直于AC,△ACB’的面積是否變化?若變化,說(shuō)明理由;若不變化,求出面積;

4)當(dāng)PB=6時(shí),在直線l變化過(guò)程中,求△ACB’面積的最大值.

【答案】(1)4;(2)5;(3)面積不變,SACB’=;(4)24+4

【解析】

(1)證明△APB′是等邊三角形即可解決問(wèn)題;

(2)如圖2中,設(shè)直線lBC于點(diǎn)E,連接B B′PEO,證明△PEB是等邊三角形,求出OB即可解決問(wèn)題;

(3)如圖3中,結(jié)論:面積不變,證明B B′//AC即可;

(4)如圖4中,當(dāng)PB′AC時(shí),△ACB′的面積最大,設(shè)直線PB′AC于點(diǎn)E,求出B′E即可解決問(wèn)題.

(1)如圖1,∵△ABC為等邊三角形,

∴∠A=60°,AB=BC=CA=8,

∵PB=4,

PB′=PB=PA=4

∠A=60°,

∴△APB′是等邊三角形,

∴AB=AP=4

故答案為:4;

(2)如圖2,設(shè)直線lBC于點(diǎn)E,連接B B′PEO,

PE∥AC,

∴∠BPE=A=60°∠BEP=∠C=60°,

∴△PEB是等邊三角形,

PB=5B、B′關(guān)于PE對(duì)稱(chēng),

∴BB′PEBB′=2OB,

OB=PB·sin60°=,

∴BB=5,

故答案為:5;

(3)如圖3,結(jié)論:面積不變.

過(guò)點(diǎn)BBEACE,

則有BE=AB·sin60°=

SABC==16,

BB′關(guān)于直線l對(duì)稱(chēng),

BB′⊥直線l,

直線lAC,

AC//BB′

∴SACB’=SABC=16;

(4)如圖4,當(dāng)B′PAC時(shí),△ACB′的面積最大,

設(shè)直線PB′ACE,

Rt△APE中,PA=2,∠PAE=60°,

∴PE=PA·sin60°=

∴BE=BP+PE=6+,

∴SACB最大值=×(6+)×8=24+4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,若點(diǎn)是線段上的動(dòng)點(diǎn)(不與重合),分別以、為邊向線段的同一側(cè)作等邊和等邊.

1)圖1中,連接、,相交于點(diǎn),設(shè),那么 ;

2)如圖2,若點(diǎn)固定,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)(旋轉(zhuǎn)角小于),此時(shí)的大小是否發(fā)生變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射箭隊(duì)準(zhǔn)備從王方、李明二人中選拔1人參加射箭比賽,在選拔賽中,兩人各射箭10次的成績(jī)(單位:環(huán)數(shù))如下:

次數(shù)

1

2

3

4

5

6

7

8

9

10

王方

7

10

9

8

6

9

9

7

10

10

李明

8

9

8

9

8

8

9

8

10

8

(1)根據(jù)以上數(shù)據(jù),將下面兩個(gè)表格補(bǔ)充完整:

王方10次射箭得分情況

環(huán)數(shù)

6

7

8

9

10

頻數(shù)

______

______

______

______

______

頻率

______

______

______

______

______

李明10次射箭得分情況

環(huán)數(shù)

6

7

8

9

10

頻數(shù)

______

______

______

______

______

頻率

______

______

______

______

______

(2)分別求出兩人10次射箭得分的平均數(shù);

(3)從兩人成績(jī)的穩(wěn)定性角度分析,應(yīng)選派誰(shuí)參加比賽合適.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+4x軸、y軸分別交于點(diǎn)A、點(diǎn)B,點(diǎn)Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點(diǎn)B恰好落在x軸正半軸上的點(diǎn)C處.

(1)求AB的長(zhǎng)和點(diǎn)C的坐標(biāo);

(2)求直線CD的解析式;

(3)y軸上是否存在一點(diǎn)P,使得SPAB=,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)BD分別向線段AE作垂線段BQDF,點(diǎn)QF是垂足,連結(jié)AB,DE,BD,BDAE于點(diǎn)C,且ABDE,AFEQ

(1)求證:ABQEDF

(2)求證:CBD的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字書(shū)”、“”、“”、“的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻.

(1)若從中任取一個(gè)球,球上的漢字剛好是書(shū)的概率為__________.

(2)從中任取一球,不放回,再?gòu)闹腥稳∫磺颍?qǐng)用樹(shù)狀圖或列表的方法,求取出的兩個(gè)球上的漢字能組成歷城的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AC為直徑,弧AE=BD,BEDCDC的延長(zhǎng)線于點(diǎn)E.

(1)求證:∠1=BCE;

(2)求證:BE是⊙O的切線;

(3)若EC=1,CD=3,求cosDBA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=-x4x軸交于點(diǎn)A,與y軸交于點(diǎn)B.

(1)求點(diǎn)AB的坐標(biāo);

(2)在直線AB上是否存在點(diǎn)P,使OAP是以OA為底邊的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)若將RtAOB折疊,使OB邊落在AB上,點(diǎn)O與點(diǎn)D重合,折痕為BC,求點(diǎn)C的坐標(biāo)。

(4)直接寫(xiě)出折痕BC所在直線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為4的正方形置于平面直角坐標(biāo)系第一象限,使AB邊落在x軸正半軸上,且點(diǎn)A的坐標(biāo)是(1,0).

1)直線yx經(jīng)過(guò)點(diǎn)C,且與x軸交于點(diǎn)E,求四邊形AECD的面積;

2)若直線l經(jīng)過(guò)點(diǎn)E,且將正方形ABCD分成面積相等的兩部分,求直線l的函數(shù)表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案