已知:拋物線y=a(x-2)2+b(ab<0)的頂點(diǎn)為A,與x軸的交點(diǎn)為B,C(點(diǎn)B在點(diǎn)C的左側(cè)).
(1)直接寫(xiě)出拋物線對(duì)稱軸方程;
(2)若拋物線經(jīng)過(guò)原點(diǎn),且△ABC為直角三角形,求a,b的值;
(3)若D為拋物線對(duì)稱軸上一點(diǎn),則以A,B,C,D為頂點(diǎn)的四邊形能否為正方形?若能,請(qǐng)寫(xiě)出a,b滿足的關(guān)系式;若不能,說(shuō)明理由.
【答案】分析:(1)根據(jù)y=a(x-2)2+b直接得出答案;
(2)根據(jù)直線x=2與x軸交于點(diǎn)E,則E(2,0),以及拋物線經(jīng)過(guò)原點(diǎn),得出B(0,0),C(4,0),進(jìn)而求出AE=BE=EC,當(dāng)拋物線的頂點(diǎn)為A(2,-2)時(shí),以及當(dāng)拋物線的頂點(diǎn)為A′(2,2)時(shí)求出即可;
(3)根據(jù)B、C關(guān)于點(diǎn)E中心對(duì)稱,當(dāng)A,D也關(guān)于點(diǎn)E對(duì)稱,且BE=AE時(shí),四邊形ABDC是正方形,即可求出.
解答:解:(1)拋物線對(duì)稱軸方程:x=2.(2分)

(2)設(shè)直線x=2與x軸交于點(diǎn)E,則E(2,0).
∵拋物線經(jīng)過(guò)原點(diǎn),
∴B(0,0),C(4,0).(3分)
∵△ABC為直角三角形,根據(jù)拋物線的對(duì)稱性可知AB=AC,
∴AE=BE=EC,
∴A(2,-2)或(2,2).
當(dāng)拋物線的頂點(diǎn)為A(2,-2)時(shí),y=a(x-2)2-2,
把(0,0)代入,得:,
此時(shí),b=-2.(5分)
當(dāng)拋物線的頂點(diǎn)為A′(2,2)時(shí),y=a(x-2)2+2,
把(0,0)代入,得:,此
時(shí),b=2.
,b=-2或,b=2.(7分)

(3)依題意,B、C關(guān)于點(diǎn)E中心對(duì)稱,當(dāng)A,D也關(guān)于點(diǎn)E對(duì)稱,且BE=AE時(shí),四邊形ABDC是正方形.
∵A(2,b),
∴AE=|b|,
∴B(2-|b|,0),
把B(2-|b|,0)代入y=a(x-2)2+b,得ab2+b=0,
∵b≠0,
∴ab•b+b=0,
∴ab=-1.(10分)
點(diǎn)評(píng):此題主要考查了二次函數(shù)的頂點(diǎn)式的應(yīng)用以及二次函數(shù)的對(duì)稱性,二次函數(shù)的綜合應(yīng)用是初中階段的重點(diǎn)題型特別注意利用數(shù)形結(jié)合是這部分考查的重點(diǎn)也是難點(diǎn)同學(xué)們應(yīng)重點(diǎn)掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一拋物線與x軸的交點(diǎn)是A(-1,0)、B(m,0)且經(jīng)過(guò)第四象限的點(diǎn)C(1,n),而m+n=-1,mn=-12,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含m的代數(shù)式表示);
(2)“若AB的長(zhǎng)為2
2
,求拋物線的解析式.”解法的部分步驟如下,補(bǔ)全解題過(guò)程,并簡(jiǎn)述步驟①的解題依據(jù),步驟②的解題方法;
解:由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(
 
,0)
∵拋物線的對(duì)稱性及AB=2
2
,
∴AD=DB=|xA-xD|=2
2

∵點(diǎn)A(xA,0)在拋物線y=(x-h)2+k上,
∴0=(xA-h)2+k①
∵h(yuǎn)=xC=xD,將|xA-xD|=
2
代入上式,得到關(guān)于m的方程0=(
2
)2+(      )

(3)將(2)中的條件“AB的長(zhǎng)為2
2
”改為“△ABC為等邊三角形”,用類似的方法求出此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線y=x2-6x+c的最小值為1,那么c的值是( 。
A、10B、9C、8D、7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2-4x+1,將此拋物線沿x軸方向向左平移4個(gè)單位長(zhǎng)度,得到一條新的拋物線.
(1)求平移后的拋物線解析式;
(2)由拋物線對(duì)稱軸知識(shí)我們已經(jīng)知道:直線x=m,即為過(guò)點(diǎn)(m,0)平行于y軸的直線,類似地,直線y=m,即為過(guò)點(diǎn)(0,m)平行于x軸的直線、請(qǐng)結(jié)合圖象回答:當(dāng)直線y=m與這兩條拋物線有且只有四個(gè)交點(diǎn),實(shí)數(shù)m的取值范圍;
(3)若將已知的拋物線解析式改為y=x2+bx+c(b<0),并將此拋物線沿x軸向左平移-b個(gè)單位長(zhǎng)度,試回答(2)中的問(wèn)題.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽城模擬)如圖a,在平面直角坐標(biāo)系中,A(0,6),B(4,0)

(1)按要求畫(huà)圖:在圖a中,以原點(diǎn)O為位似中心,按比例尺1:2,將△AOB縮小,得到△DOC,使△AOB與△DOC在原點(diǎn)O的兩側(cè);并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為
(0,-3)
(0,-3)
,點(diǎn)B的對(duì)應(yīng)點(diǎn)C的坐標(biāo)為
(-2,0)
(-2,0)
;
(2)已知某拋物線經(jīng)過(guò)B、C、D三點(diǎn),求該拋物線的函數(shù)關(guān)系式,并畫(huà)出大致圖象;
(3)連接DB,若點(diǎn)P在CB上,從點(diǎn)C向點(diǎn)B以每秒1個(gè)單位運(yùn)動(dòng),點(diǎn)Q在BD上,從點(diǎn)B向點(diǎn)D以每秒1個(gè)單位運(yùn)動(dòng),若P、Q兩點(diǎn)同時(shí)分別從點(diǎn)C、點(diǎn)B點(diǎn)出發(fā),經(jīng)過(guò)t秒,當(dāng)t為何值時(shí),△BPQ是等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案