【題目】如圖,AB是⊙O的直徑,過點(diǎn)B做⊙O的切線BC,點(diǎn)D為⊙O上一點(diǎn),且CD=CB,連結(jié)DO并延長交CB的延長線于點(diǎn)E.
(1)求證:CD是⊙O的切線;
(2)連接AC,若BE=4,DE=8,求線段AC的長.
【答案】(1)證明見解析;(2)6.
【解析】
(1)證明△COB≌△COD,得到∠ODC=∠OBC=90°,根據(jù)切線的判定定理證明;
(2)根據(jù)勾股定理求出半徑r和 CB.在Rt△ABC中根據(jù)勾股定理計(jì)算即可.
(1)在△COB和△COD中,∵,∴△COB≌△COD(SSS),∴∠ODC=∠OBC=90°,∴CD是⊙O的切線;
(2)設(shè)OB=r,則EO=ED-OD=8-r,由勾股定理得:OE2=OB2+BE2,即,解得:r=3,∴AB=2r =6.在Rt△EDC中,DE2+DC2=EC2,即82+BC2=(4+BC)2,解得:BC=6,∴AC6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)方法解下列方程:
(1)(x-4)2-81=0;
(2)3x(x-3)=2(x-3);
(3).
(4)解方程:2x2-10x=3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC擺放在平面直角坐標(biāo)系中,點(diǎn)A在軸上,點(diǎn)C在軸上,OA=8,OC=6.
(1)求直線AC的表達(dá)式
(2)若直線與矩形OABC有公共點(diǎn),求的取值范圍;
(3)若點(diǎn)O與點(diǎn)B位于直線兩側(cè),直接寫出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABC的邊長為3+,在三角形中放入正方形DEMN和正方形EFPH,使得D、E、F在邊AB上,點(diǎn)P、N分別在邊CB、CA上,設(shè)兩個正方形的邊長分別為m,n,則這兩個正方形的面積和的最小值為( )
A. B. C. 3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù)的圖像與x軸的一個交點(diǎn)為O(0,0),點(diǎn)P(m,0)是x軸正半軸上的一個動點(diǎn).
(1)如圖1,求二次函數(shù)的圖像與x軸另一個交點(diǎn)的坐標(biāo);
(2)如圖2,過點(diǎn)P作x軸的垂線交直線與點(diǎn)C,交二次函數(shù)圖像于點(diǎn)D,
①當(dāng)PD=2PC時,求m的值;
如圖3,已知A(3,-3)在二次函數(shù)圖像上,連結(jié)AP,求的最小值;
(3如圖4,在第(2)小題的基礎(chǔ)上,作直線OD,作點(diǎn)C關(guān)于直線OD的對稱點(diǎn)C’,當(dāng)C’落在坐標(biāo)軸上時,請直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的和點(diǎn)P,給出如下定義:如果在上存在一個動點(diǎn)Q,使得是以CQ為底的等腰三角形,且滿足底角,那么就稱點(diǎn)P為的“關(guān)聯(lián)點(diǎn)”.
當(dāng)的半徑為2時,
在點(diǎn),,中,的“關(guān)聯(lián)點(diǎn)”是______;
如果點(diǎn)P在射線上,且P是的“關(guān)聯(lián)點(diǎn)”,求點(diǎn)P的橫坐標(biāo)m的取值范圍.
的圓心C在x軸上,半徑為4,直線與兩坐標(biāo)軸交于A和B,如果線段AB上的點(diǎn)都是的“關(guān)聯(lián)點(diǎn)”,直接寫出圓心C的橫坐標(biāo)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是方程x2-6x+5=0的兩個實(shí)數(shù)根,且m<n,拋物線
y=-x2+bx+c的圖象經(jīng)過點(diǎn)A(m,0)、B(0,n).
(1)求這個拋物線的解析式;
(2)設(shè)(1)中拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線段OC上的一點(diǎn),過點(diǎn)P作PH⊥x軸,與拋物線交于H點(diǎn),若直線BC把△PCH分成面積之比為2:3的兩部分,請求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,點(diǎn)D是半徑OA的中點(diǎn),過點(diǎn)D作CD⊥AB,交于點(diǎn)C,點(diǎn)E為弧BC的中點(diǎn),連結(jié)ED并延長ED交于點(diǎn)F,連結(jié)AF、BF,則( )
A. sin∠AFE=B. cos∠BFE=C. tan∠EDB=D. tan∠BAF=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了40m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計(jì)算出該建筑物的高度.(結(jié)果精確到1m)(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com