【題目】如圖,點C在以AB為直徑的O上,BD與過點C的切線垂直于點D,BDO交于點E

1)求證:BC平分∠DBA

2)連接AEAC,若cosABDOAm,請寫出求四邊形AEDC面積的思路.

【答案】1)證明見解析;(2S梯形AEDCm2.解題思路見解析.

【解析】

1)如圖1中,連接OC,由CD是⊙O的切線,推出OCCD,由BDCD,推出OCBD,推出∠OCB=∠CBD,由OCOB,推出∠OCB=∠OBC,即可推出∠CBO=∠CBD

2)如圖連接AC、AE.易知四邊形AEDC是直角梯形,求出CD、AE、DE利用梯形面積公式計算即可.

1)證明:如圖1中,連接OC,

CD是⊙O的切線,

OCCD,∵BDCD,

OCBD,

∴∠OCB=∠CBD,

OCOB,

∴∠OCB=∠OBC,

∴∠CBO=∠CBD,

BC平分∠DBA

2)解:如圖連接AC、AE

cosABD,

∴∠ABD60°,

由(1)可知,∠ABC=∠CBD30°

RtACB中,∵∠ACB90°,∠ABC30°,AB2m

BCABcos30°m,

RtABE中,∵∠AEB90°,∠BAE30°,AB2m,

BEABm,AEm

RtCDB中,∵∠D90°,∠CBD30°,BCm,

CDBCm,BDm,

DEDBBEm

S梯形AEDCCD+AEDEm2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一座商場大樓的頂部豎直立有一個矩形廣告牌,小紅同學在地面上選擇了在條直線上的三點為樓底),,她在處測得廣告牌頂端的仰角為,在處測得商場大樓樓頂的仰角為米.已知廣告牌的高度米,求這座商場大樓的高度(,小紅的身高不計,結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解七年級學生體育測試情況,在七年級各班隨機抽取了部分學生的體育測試成績,按四個等級進行統(tǒng)計(說明:級:90分~100分;級:75分~89分;級:60分~74分;級:60分以下),并將統(tǒng)計結(jié)果繪制成兩個不完整的統(tǒng)計圖,請你結(jié)合統(tǒng)計圖中所給信息解答下列問題:

1)學校在七年級各班共隨機調(diào)查了________名學生;

2)在扇形統(tǒng)計圖中,級所在的扇形圓心角的度數(shù)是_________;

3)請把條形統(tǒng)計圖補充完整;

4)若該校七年級有500名學生,請根據(jù)統(tǒng)計結(jié)果估計全校七年級體育測試中級學生約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為3E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=1,則FM的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每一幅圖中均含有若干個正方形,第1幅圖中有1個正方形;第2幅圖中有1+45個正方形;第三幅圖中有1+4+914個正方形;按這樣的規(guī)律下去,第4幅圖中有_____個正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明做游戲:游戲者分別轉(zhuǎn)動如圖的兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤各一次,當兩個轉(zhuǎn)盤的指針所指數(shù)字都為x24x+30的根時,他就可以獲得一次為大家表演節(jié)目的機會.

1)利用樹狀圖或列表的方法(只選一種)表示出游戲可能出現(xiàn)的所有結(jié)果;

2)求小明參加一次游戲就為大家表演節(jié)目的機會的概率是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(1,0),(0,2),某拋物線的頂點坐標為D(-1,1)且經(jīng)過點B,連接AB,直線AB與此拋物線的另一個交點為C,則SBCDSABO=( )

A. 8:1B. 6:1C. 5:1D. 4:1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,為了躲避臺風,一輪船一直由西向東航行,上午點,在處測得小島的方向是北偏東,以每小時海里的速度繼續(xù)向東航行,中午點到達處,并測得小島的方向是北偏東,若小島周圍海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,EBC邊上一點AB=AE,AE平分DAB,∠EAC=25°,AED的度數(shù)是______

查看答案和解析>>

同步練習冊答案