【題目】如圖,AEABC的角平分線,DAE上一點,∠DBE=∠DCE.求證:BECE

【答案】證明見解析

【解析】

DGABG,DHACH,證明RtBDGRtCDH且根據(jù)全等三角形對應(yīng)角相等得出∠DBG=∠DCH,由此可得∠ABE=∠ACE,根據(jù)等角對等邊得出ABAC,根據(jù)等腰三角形三線合一即可得出結(jié)論.

證明:作DGABGDHACH,如圖所示:

AEABC的角平分線,DGAB,DHAC,

DGDH,

∵∠DBE=∠DCE,

DBDC,

RtBDGRtCDH中,

,

RtBDGRtCDHHL),

∴∠DBG=∠DCH,

∵∠DBE=∠DCE,

∴∠ABE=∠ACE,

ABAC,

AEABC的角平分線,

BECE

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABO的頂點A是反比例函數(shù)y=與一次函數(shù)y=﹣x﹣(k+1)的圖象在第二象限的交點,ABx軸于B,且SABO=

(1)直接寫出這兩個函數(shù)的關(guān)系式;

(2)求△AOC的面積;

(3)根據(jù)圖象直接寫出:當(dāng)x為何值時,反比例函數(shù)的值小于一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2AC, DBC上,且∠CAD=B,點EAB的中點,聯(lián)結(jié)CEAD交于點G,FBC上,且∠CEF=BAC.

(1)若∠BAC=90°,如圖1,求證: EG+ EF=AC;

(2)若∠BAC=120°,如圖2,請猜想線段EGEFAC之間的數(shù)量關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)當(dāng)__________時,有意義;(2)當(dāng)__________時,有意義;

3)當(dāng)__________時,有意義;(4)當(dāng)__________時,有意義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDABC的角平分線,ABC的面積為12,BC長為6,點E,F分別是CD,AC上的動點,則AE+EF的最小值是( 。

A.6B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A的平分線交BCD,過點DDEAC,DFAB,垂足為點E、F,下面四個結(jié)論中:①∠AEF=∠AFE;②AD垂直平分EF;③SBFDSCEDBFCE;④EFBC,正確的是( 。

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCDBE均為等腰直角三角形.

1)求證:ADCE;

2)猜想:ADCE是否垂直?若垂直,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A點坐標(biāo)為(3,4),將線段OA繞原點O逆時針旋轉(zhuǎn)90°得到線段OA′,則點A′的坐標(biāo)是(

A. (﹣4,3) B. (﹣3,4)

C. (3,﹣4) D. (4,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤,都被分成了3等份,并在每份內(nèi)均標(biāo)有數(shù)字,如圖所示.規(guī)則如下:

分別轉(zhuǎn)動轉(zhuǎn)盤;

兩個轉(zhuǎn)盤停止后,將兩個指針?biāo)阜輧?nèi)的數(shù)字相乘(若指針停止在等份線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止).

1】用列表法或樹狀圖分別求出數(shù)字之積為3的倍數(shù)和數(shù)字之積為5的倍數(shù)的概率;

2】小明和小亮想用這兩個轉(zhuǎn)盤做游戲,他們規(guī)定:數(shù)字之積為3的倍數(shù)時,小明得2分;數(shù)字之積為5的倍數(shù)時,小亮得3分.這個游戲?qū)﹄p方公平嗎?請說明理由;認(rèn)為不公平的,試修改得分規(guī)定,使游戲?qū)﹄p方公平.

查看答案和解析>>

同步練習(xí)冊答案