【題目】為了幫助市內(nèi)一名患白血病的中學(xué)生,東營(yíng)市某學(xué)校數(shù)學(xué)社團(tuán)15名同學(xué)積極捐款,捐款情況如下表所示,下列說法正確的是( 。

捐款數(shù)額

10

20

30

50

100

人數(shù)

2

4

5

3

1

A. 眾數(shù)是100 B. 中位數(shù)是30 C. 極差是20 D. 平均數(shù)是30

【答案】B

【解析】

根據(jù)中位數(shù)、眾數(shù)和極差的概念及平均數(shù)的計(jì)算公式,分別求出這組數(shù)據(jù)的中位數(shù)、平均數(shù)、眾數(shù)和極差,得到正確結(jié)論.

該組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)是30,故眾數(shù)是30不是100,所以選項(xiàng)A不正確;

該組共有15個(gè)數(shù)據(jù),其中第8個(gè)數(shù)據(jù)是30,故中位數(shù)是30,所以選項(xiàng)B正確;

該組數(shù)據(jù)的極差是100-10=90,故極差是90不是20,所以選項(xiàng)C不正確;

該組數(shù)據(jù)的平均數(shù)是不是30,所以選項(xiàng)D不正確.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,

(1)求證:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2+bx+c過點(diǎn)(2,﹣2)和(﹣1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式.
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動(dòng)變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=1,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°至△A′B′C,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好落在AB上,求BB′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某汽車交易市場(chǎng)為了解二手轎車的交易情況,將本市場(chǎng)去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時(shí)間為標(biāo)準(zhǔn)分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計(jì)圖(圖都不完整).

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)該汽車交易市場(chǎng)去年共交易二手轎車   輛.

(2)把這幅條形統(tǒng)計(jì)圖補(bǔ)充完整.(畫圖后請(qǐng)標(biāo)注相應(yīng)的數(shù)據(jù))

(3)在扇形統(tǒng)計(jì)圖中,D類二手轎車交易輛數(shù)所對(duì)應(yīng)扇形的圓心角為   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】進(jìn)入冬季,我市空氣質(zhì)量下降,多次出現(xiàn)霧霾天氣.商場(chǎng)根據(jù)市民健康需要,代理銷售一種防塵口罩,進(jìn)貨價(jià)為20元/包,經(jīng)市場(chǎng)銷售發(fā)現(xiàn):銷售單價(jià)為30元/包時(shí),每周可售出200包,每漲價(jià)1元,就少售出5包.若供貨廠家規(guī)定市場(chǎng)價(jià)不得低于30元/包,且商場(chǎng)每周完成不少于150包的銷售任務(wù).
(1)試確定周銷售量y(包)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式;
(2)試確定商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)w(元)與售價(jià)x(元/包)之間的函數(shù)關(guān)系式,并直接寫出售價(jià)x的范圍;
(3)當(dāng)售價(jià)x(元/包)定為多少元時(shí),商場(chǎng)每周銷售這種防塵口罩所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是

查看答案和解析>>

同步練習(xí)冊(cè)答案