【題目】我們縣是紫菜生產(chǎn)大縣,某景點(diǎn)商戶向游客推銷一種加工好的優(yōu)質(zhì)紫菜,已知每千克成本為20元.市場調(diào)查發(fā)現(xiàn),在一段時(shí)間內(nèi),該產(chǎn)品銷售量(千克)與銷售單價(jià)(元/千克)的變化而變化有如下關(guān)系式:.設(shè)這種紫菜在這段時(shí)間內(nèi)的銷售利潤為(元).
(1)求與的關(guān)系式;
(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
(3)如果物價(jià)部門規(guī)定該景區(qū)這種紫菜的銷售單價(jià)不得高于28元/千克,該商戶每天能否獲得比150元更大的利潤?如果能請求出最大利潤,如果不能,請說明理由.
【答案】(1)y;(2)當(dāng)銷售價(jià)定為30元時(shí),每天的銷售利潤最大,最大利潤是200元;(3)能,當(dāng)銷售價(jià)定為28元時(shí),每天的銷售利潤最大,此時(shí)元,即該商戶每天能獲得比150元更大的利潤.
【解析】
(1)根據(jù)利潤=(售價(jià)-成本)×銷售量,即可求出與的關(guān)系式;
(2)由(1)中的二次函數(shù),求此二次函數(shù)的最大值即可得到最大利潤;
(3)由(1)中的二次函數(shù)得到增減性,根據(jù)增減性可求出時(shí)函數(shù)的最大值.
解:(1).
(2)
所以當(dāng)銷售價(jià)定為30元時(shí),每天的銷售利潤最大,最大利潤是200元.
(3)∵,其中,
∴當(dāng)時(shí),隨的增大而增大,
∴當(dāng)時(shí),隨的增大而增大.
所以,當(dāng)銷售價(jià)定為28元時(shí),每天的銷售利潤最大,此時(shí)元,即該商戶每天能獲得比150元更大的利潤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為6的⊙O中,正六邊形ABCDEF與正方形AGDH都內(nèi)接于⊙O,則圖中陰影部分的面積為( 。
A. 27﹣9B. 18C. 54﹣18D. 54
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù)的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中的弦BC等于⊙O的半徑,延長BC到D,使BC=CD,點(diǎn)A為優(yōu)弧BC上的一個(gè)動(dòng)點(diǎn),連接AD,AB,AC,過點(diǎn)D作DE⊥AB,交直線AB于點(diǎn)E,當(dāng)點(diǎn)A在優(yōu)弧BC上從點(diǎn)C運(yùn)動(dòng)到點(diǎn)B時(shí),則DE+AC的值的變化情況是( )
A.不變B.先變大再變小C.先變小再變大D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過頂點(diǎn)A(0,2),以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且B在C的左側(cè),△ABC有一個(gè)內(nèi)角為60°.
(1)求拋物線的解析式.
(2)若MN與直線y=﹣2x平行,M(x1,y1),N(x2,y2),M,N都在拋物線上,且M,N位于直線BC的兩側(cè),y1>y2,ME⊥BC于E,NF⊥BC于F,解決以下問題:
①求證:.
②求△MBC外心的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著技術(shù)的發(fā)展,人們對各類產(chǎn)品的使用充滿期待.某公司計(jì)劃在某地區(qū)銷售第一款產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價(jià)格將隨銷售周期的變化而變化.設(shè)該產(chǎn)品在第(為正整數(shù))個(gè)銷售周期每臺的銷售價(jià)格為元,與之間滿足如圖所示的一次函數(shù)關(guān)系.
(1)求與之間的關(guān)系式;
(2)設(shè)該產(chǎn)品在第個(gè)銷售周期的銷售數(shù)量為(萬臺),與的關(guān)系可用來描述.根據(jù)以上信息,試問:哪個(gè)銷售周期的銷售收入最大?此時(shí)該產(chǎn)品每臺的銷售價(jià)格是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格上有一個(gè)△ABC,如果用(2,1)表示方格紙上A點(diǎn)的位置,(1,2)表示B點(diǎn)的位置,C點(diǎn)的頂點(diǎn)也在網(wǎng)格點(diǎn)上.
(1)作出△ABC關(guān)于點(diǎn)O的對稱圖形△A′B′C′(不寫作法,但要在圖中標(biāo)出字母);
(2)寫出A′、B′、C′三點(diǎn)的坐標(biāo);
(3)若網(wǎng)格上的最小正方形邊長為1,求出△A′′BC′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線BD平分,,E為BC的中點(diǎn),AE與BD相交于點(diǎn)F,若,則BF的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(已有經(jīng)驗(yàn))
我們已經(jīng)研究過作一個(gè)圓經(jīng)過兩個(gè)已知點(diǎn),也研究過作一個(gè)圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:
(遷移經(jīng)驗(yàn))
(1)如圖①,已知點(diǎn)M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙O過M點(diǎn),且與直線l相切.(每種方法作出一個(gè)圓即可,保留作圖痕跡,不寫作法)
(問題解決)
如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=6.
(2)已知⊙O經(jīng)過點(diǎn)C,且與直線AB相切.若圓心O在△ABC的內(nèi)部,則⊙O半徑r的取值范圍為 .
(3)點(diǎn)D是邊AB上一點(diǎn),BD=m,請直接寫出邊AC上使得∠BED為直角時(shí)點(diǎn)E的個(gè)數(shù)及相應(yīng)的m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com