【題目】如右圖,在每個(gè)小正方形邊長為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將△ABC向左平移2格,再向上平移4格.
(1)請(qǐng)?jiān)趫D中畫出平移后的△ABC,
(2)再在圖中畫出△ABC的高CD,
(3)在右圖中能使S△ABC=S△PBC的格點(diǎn)P的個(gè)數(shù)有 個(gè)(點(diǎn)P異于A)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①有一個(gè)寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點(diǎn)O為中心.(下列各題結(jié)果精確到0.1m)
(1)求地基的中心到邊緣的距離;
(2)己知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖①,在△ABC中,∠ACB=2∠B,AD為∠BAC的角平分線,
求證:AB=AC+CD
小明同學(xué)經(jīng)過思考,得到如下解題思路:
在AB上截取AE=AC,連接DE,得到△ADE≌△ADC,從而易證AB=AC+CD
(1)請(qǐng)你根據(jù)以上解思路寫出證明過程;
(2)如圖②,若AD為△ABC的外角∠CAE平分線,交BC的延長線于點(diǎn)D,
∠D=25°,其他條件不變,求∠B的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD,BE相交于點(diǎn)M,連接CM.
(1)求證:BE=AD;
(2)用含α的式子表示∠AMB的度數(shù);
(3)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P,Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點(diǎn)為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,在一段時(shí)間內(nèi),該商品的銷售量y(千克)與每千克的銷售價(jià)x(元)滿足一次函數(shù)關(guān)系(如圖所示),其中30≤x≤80.
(1)求y關(guān)于x的函數(shù)解析式;
(2)若該種商品每千克的成本為30元,當(dāng)每千克的銷售價(jià)為多少元時(shí),獲得的利潤為600元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com