如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為
2
-1,直線L:y=-x-
2
與坐標(biāo)軸分別交于A、C兩點(diǎn),點(diǎn)B的坐標(biāo)為(4,1),⊙B與x軸相切于點(diǎn)M.
(1)求點(diǎn)A的坐標(biāo)及∠CAO的度數(shù);
(2)⊙B以每秒1個(gè)單位長(zhǎng)度的速度沿x軸負(fù)方向平移,同時(shí),直線l繞點(diǎn)A順時(shí)針勻速旋轉(zhuǎn).當(dāng)⊙B第一次與⊙O相切時(shí),直線L也恰好與⊙B第一次相切.問(wèn):直線AC繞點(diǎn)A每秒旋轉(zhuǎn)多少度?
精英家教網(wǎng)
分析:(1)根據(jù)直線的方程,可得A的坐標(biāo)、點(diǎn)C的坐標(biāo),進(jìn)而可得AO,CO的長(zhǎng);最后可得∠CAO=45°;
(2)根據(jù)題意,求得⊙B第一次與⊙O相切,即外切時(shí),運(yùn)動(dòng)的長(zhǎng)度與時(shí)間、直線l的位置;進(jìn)而求出其旋轉(zhuǎn)的角度,最后可求得直線AC繞點(diǎn)A每秒旋轉(zhuǎn)的度數(shù).
解答:解:(1)A(-
2
,0),
∵C(0,-
2
),
∴OA=OC.
∵OA⊥OC,
∴∠CAO=45°.

(2)如圖,設(shè)⊙B平移t秒到⊙B1處與⊙O第一次相切,此時(shí),直線α旋轉(zhuǎn)到α1恰好與⊙B1第一次相切于點(diǎn)P,⊙B1與x軸相切于點(diǎn)N,連接B1O,B1N,則MN=t.
∵以坐標(biāo)原點(diǎn)O為圓心的⊙O的半徑為
2
-1,點(diǎn)B的坐標(biāo)為(4,1),⊙B與x軸相切于點(diǎn)M.
∴B1O=
2
-1+1=
2
,
∵B1N⊥AN,精英家教網(wǎng)
∴MN=3,即t=3.
連接B1A,B1P.則B1P⊥AP,B1P=B1N.
∴∠PAB1=∠NAB1
∵OA=OB1=
2
,
∴∠AB1O=∠NAB1
∴∠PAB1=∠AB1O.
∴PA∥B1O.
在Rt△NOB1中,∠B1ON=45°,
∴∠PAN=45°,
∴∠PAC=90°,
360°-90°
3
=90°
∴直線AC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)每秒轉(zhuǎn)動(dòng)90°.
點(diǎn)評(píng):本題在平面直角坐標(biāo)系中,求解圓的位置關(guān)系的問(wèn)題,考查學(xué)生代數(shù)與幾何知識(shí)的綜合運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案