如圖,⊙O1、⊙O2相交于P、Q兩點,其中⊙O1的半徑r1=2,⊙O2的半徑r2=.過點Q作CD⊥PQ,分別交⊙O1和⊙O2于點C.D,連接CP、DP,過點Q任作一直線AB交⊙O1和⊙O2于點A.B,連接AP、BP、AC.DB,且AC與DB的延長線交于點E.
(1)求證:;
(2)若PQ=2,試求∠E度數(shù).
解答:(1)證明:∵⊙O1的半徑r1=2,⊙O2的半徑r2=, ∴PC=4,PD=2, ∵CD⊥PQ, ∴∠PQC=∠PQD=90°, ∴PC.PD分別是⊙O1、⊙O2的直徑, 在⊙O1中,∠PAB=∠PCD, 在⊙O2中,∠PBA=∠PDC, ∴△PAB∽△PCD, ∴===, 即=. (2)答:∠E的度數(shù)是75°. 解:在Rt△PCQ中,∵PC=2r1=4,PQ=2, ∴cos∠CPQ=, ∴∠CPQ=60°, ∵在Rt△PDQ中,PD=2r2=2,PQ=2, ∴sin∠PDQ=, ∴∠PDQ=45°, ∴∠CAQ=∠CPQ=60°,∠PBQ=∠PDQ=45°, 又∵PD是⊙O2的直徑, ∴∠PBD=90°, ∴∠ABE=90°-∠PBQ=45° 在△EAB中,∴∠E=180°-∠CAQ-∠ABE=75° |
相交兩圓的性質(zhì);三角形內(nèi)角和定理;圓周角定理;相似三角形的判定與性質(zhì);解直角三角形. |
科目:初中數(shù)學 來源: 題型:
AP2 |
BP2 |
r |
R |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com