【題目】如圖,在Rt△ABC中,∠A=30°,BC=2 ,以直角邊AC為直徑作⊙O交AB于點D,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. ﹣
【答案】A
【解析】解:如圖連接OD、CD. ∵AC是直徑,
∴∠ADC=90°,
∵∠A=30°,
∴∠ACD=90°﹣∠A=60°,
∵OC=OD,
∴△OCD是等邊三角形,
∵BC是切線.
∴∠ACB=90°,∵BC=2 ,
∴AB=4 ,AC=6,
∴S陰=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)
= ×6×2 ﹣ ×3×3 ﹣( ﹣ ×32)
= ﹣ π.
故選A.
【考點精析】根據(jù)題目的已知條件,利用含30度角的直角三角形和扇形面積計算公式的相關(guān)知識可以得到問題的答案,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,深圳今年4 月2 日至4 月8 日每天的最高氣溫變化如圖所示.則關(guān)于這七天的最高氣溫的數(shù)據(jù),下列判斷中錯誤的是( )
A.平均數(shù)是26
B.眾數(shù)是26
C.中位數(shù)是27
D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在一次愛心捐款活動中,全體同學(xué)積極踴躍捐款.現(xiàn)抽查了九年級(1)班全班同學(xué)捐款情況,并繪制出如下的統(tǒng)計表和統(tǒng)計圖:
求:(1)m=__________,n=__________;
(2)求學(xué)生捐款數(shù)目的眾數(shù)、中位數(shù)和平均數(shù);
(3)若該校有學(xué)生2500人,估計該校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=2x2+4x+m﹣1,與x軸的公共點為A,B.
(1)如果A與B重合,求m的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點; ①當(dāng)m=1時,求線段AB上整點的個數(shù);
②若設(shè)拋物線在點A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)整點的個數(shù)為n,當(dāng)1<n<8時,結(jié)合函數(shù)的圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費)
(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自動化車間計劃生產(chǎn)480個零件,當(dāng)生產(chǎn)任務(wù)完成一半時,停止生產(chǎn)進行自動化程序軟件升級,用時20分鐘,恢復(fù)生產(chǎn)后工作效率比原來提高了,結(jié)果完成任務(wù)時比原計劃提前了40分鐘,求軟件升級后每小時生產(chǎn)多少個零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠設(shè)門市部專賣某產(chǎn)品,該產(chǎn)品每件成本40元,從開業(yè)一段時間的每天銷售統(tǒng)計中,隨機抽取一部分情況如下表所示:
每件銷售價(元) | 50 | 60 | 70 | 75 | 80 | 85 | … |
每天售出件數(shù) | 300 | 240 | 180 | 150 | 120 | 90 | … |
假設(shè)當(dāng)天定的售價是不變的,且每天銷售情況均服從這種規(guī)律.
(1)觀察這些統(tǒng)計數(shù)據(jù),找出每天售出件數(shù)y與每件售價x(元)之間的函數(shù)關(guān)系,并寫出該函數(shù)關(guān)系式.
(2)門市部原設(shè)有兩名營業(yè)員,但當(dāng)銷售量較大時,在每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè)有序進行,設(shè)營業(yè)員每人每天工資為40元.求每件產(chǎn)品應(yīng)定價多少元,才能使每天門市部純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其它開支不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)直線BF垂直直線CE于點F,交CD于點G(如圖①),求證:AE=CG;
(2)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖②),找出圖中與BE相等的線段,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com