【題目】如圖,小明站在江邊某瞭望臺DE的頂端D處,測得江面上的漁船A的俯角為40°.若瞭望臺DE垂直于江面,它的高度為3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡長BC=10米.
(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)
(1)求瞭望臺DE的頂端D到江面AB的距離;
(2)求漁船A到迎水坡BC的底端B的距離.(結(jié)果保留一位小數(shù))
【答案】(1)瞭望臺DE的頂端D到江面AB的距離為11米(2)漁船A到迎水坡BC的底端B的距離為5.1米
【解析】
(1)延長DE交AB于點(diǎn)F,過點(diǎn)C作CG⊥AB,垂足為點(diǎn)G,利用坡度表示出CG,BG的長,進(jìn)而求出答案;
(2)在Rt△ADF中,利用cotA=,得出AF的長,進(jìn)而得出答案.
(1)延長DE交AB于點(diǎn)F,過點(diǎn)C作CG⊥AB,垂足為點(diǎn)G,
由題意可知CE=GF=2,CG=EF
在Rt△BCG中,∠BGC=90°,
∴i=,
設(shè)CG=4k,BG=3k,則BC==5k=10,
∴k=2,
∴BG=6,∴CG=EF=8,
∵DE=3,∴DF=DE+EF=3+8=11(米),
答:瞭望臺DE的頂端D到江面AB的距離為11米;
(2)由題意得∠A=40°,
在Rt△ADF中,∠DFA=90°,
∴cotA=,
∴≈1.19,
∴AF≈11×1.19=13.09(m),
∴AB=AF﹣BG﹣GF=5.09≈5.1(米),
答:漁船A到迎水坡BC的底端B的距離為5.1米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為直線的拋物線與軸交于、,與軸交于點(diǎn),拋物線頂點(diǎn)為,直線交軸于點(diǎn).
(1)求拋物線函數(shù)表達(dá)式;
(2)若點(diǎn)是位于直線下方拋物線上的一動點(diǎn),以、為相鄰的兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時,求此時平行四邊形的面積及點(diǎn)的坐標(biāo);
(3)在線段上是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于四個數(shù)“,,,”及四種運(yùn)算“,,,”,列算式解答:
(1)求這四個數(shù)的和;
(2)在這四個數(shù)中選出兩個數(shù),按要求進(jìn)行下列計(jì)算,使得:
①兩數(shù)差的結(jié)果最;
②兩數(shù)積的結(jié)果最大;
(3)在這四個數(shù)中選出三個數(shù),在四種運(yùn)算中選出兩種,組成一個算式,使運(yùn)算結(jié)果等于沒選的那個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的半圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB、FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=,BE=1,求半圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)某種電子產(chǎn)品共件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為.
(1)該批產(chǎn)品有正品 件;
(2)如果從中任意取出件,利用列表或樹狀圖求取出件都是正品的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】放風(fēng)箏是大家喜愛的一種運(yùn)動.星期天的上午小明()和小麗()在振羽廣場的水 平地面上放風(fēng)箏,結(jié)果風(fēng)箏在空中 處糾纏在一起,如圖所示. 此時,小明 的風(fēng)箏線 與水平線的夾角為 ,小麗的風(fēng)箏線 與水平線的夾角為 ,小明 與小麗之間的距離 為 米.已知點(diǎn) 、、 在同一條直線上,,求點(diǎn) 到地面的距離 為多少米?(本題中風(fēng)箏線均視為線段, ,結(jié)果精確到 米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=x的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A,將線段OA沿x軸向右平移3個單位長度得到線段O'A',其中點(diǎn)A與點(diǎn)A'對應(yīng),若O'A'的中點(diǎn)D恰好也在該反比例函數(shù)圖象上,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)為A(2,),拋線物與y軸交于點(diǎn)B(0,),點(diǎn)C在其對稱軸上且位于點(diǎn)A下方,將線段AC繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°,點(diǎn)A落在拋物線上的點(diǎn)P處.
(1)求拋物線的解析式;
(2)求線段AC的長;
(3)將拋物線平移,使其頂點(diǎn)A移到原點(diǎn)O的位置,這時點(diǎn)P落在點(diǎn)D的位置,如果點(diǎn)M在y軸上,且以O,C,D,M為頂點(diǎn)的四邊形的面積為8,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com