已知:如圖,為了躲避海盜,一輪船一直由西向東航行,早上8點(diǎn),在A處測得小島P的方向是北偏東75°,以每小時(shí)15海里的速度繼續(xù)向東航行,10點(diǎn)到達(dá)B處,并測得小島P的方向是北偏東60°,若小島周圍25海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

解:過P作PD⊥AB于點(diǎn)D.

∵∠PBD=90°-60°=30°
且∠PBD=∠PAB+∠APB,∠PAB=90-75=15°
∴∠PAB=∠APB
∴BP=AB=15×2=30(海里)
∵在直角△BPD中,∠PBD=∠PAB+∠APB=30°
∴PD=BP=15海里<25海里
故若繼續(xù)向東航行則有觸礁的危險(xiǎn),不能一直向東航行.
分析:過P作AB的垂線PD,在直角△BPD中可以求的∠PAD的度數(shù)是30度,即可證明△APB是等腰三角形,即可求得BP的長,進(jìn)而在直角△BPD中,利用30度的銳角所對的直角邊等于斜邊的一半,從而求得PD的長,即可確定繼續(xù)向東航行是否有觸礁的危險(xiǎn),確定是否能一直向東航行.
點(diǎn)評:解一般三角形的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.正確證明△APB是等腰三角形是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,為了躲避海盜,一輪船一直由西向東航行,早上8點(diǎn),在A處測得小島P的方向是北偏東75°,以每小時(shí)15海里的速度繼續(xù)向東航行,10點(diǎn)到達(dá)B處,并測得小島P的方向是北偏東60°,若小島周圍25海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

查看答案和解析>>

同步練習(xí)冊答案