【題目】(1)5(a2b-ab2)-2(ab2+3a2b);
(2)-2a+(3a-1)-(a-5);
(3)先化簡,再求值:x-2(x-y2)+(x+y2),其中x=-2,y=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)教育局為了解今年九年級學(xué)生體育測試情況,隨機(jī)抽查了某班學(xué)生的體育測試成績?yōu)闃颖,?/span>A、B、C、D四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下
(1)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是 ;
(2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是 ;
(3)請把條形統(tǒng)計圖補(bǔ)充完整;
(4)若該校九年級有500名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在¨ABCD中,過點(diǎn)D作DE⊥AB與點(diǎn)E,點(diǎn)F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)得到△ADE(點(diǎn)B,C的對應(yīng)點(diǎn)分別是D,E),當(dāng)點(diǎn)E在BC邊上時,連接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,∠BAD的平分線交CD于點(diǎn)E,連接BE并延長交AD延長線于點(diǎn)F,若AB=AF.
(1)求證:點(diǎn)D是AF的中點(diǎn);
(2)若∠F=60°,CD=6,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在甲批發(fā)市場以每包m元的價格進(jìn)了40包茶葉,又在乙批發(fā)市場以每包n元的價格進(jìn)了同樣的60包茶葉,如果商家以每包元的價格賣出這些茶葉,賣完后,這家商店( )
A. 盈利了B. 虧損了C. 不盈不虧D. 盈虧不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蝸牛從某點(diǎn)O開始沿東西方向直線爬行,規(guī)定向東爬行的路程記為正數(shù),向西爬行的路程記為負(fù)數(shù).爬行的各段路程依次為(單位:厘米):.問:
(1)蝸牛最后是否回到出發(fā)點(diǎn)O?
(2)蝸牛離開出發(fā)點(diǎn)O最遠(yuǎn)是多少厘米?
(3)在爬行過程中,如果每爬行1厘米獎勵一粒芝麻,則蝸?傻玫蕉嗌倭Vヂ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)A和C分別在x軸和y軸正半軸上,點(diǎn)B坐標(biāo)為(3,3),拋物線y=﹣x2+bx+c過點(diǎn)A、C,交x軸負(fù)半軸于點(diǎn)D,與BC邊的另一個交點(diǎn)為E,拋物線的頂點(diǎn)為M,對稱軸交x軸于點(diǎn)N.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P在直線MN上,求當(dāng)PE+PA的值最小時點(diǎn)P的坐標(biāo);
(3)如圖2,探索在x軸是否存在一點(diǎn)F,使∠CFO=∠CDO﹣∠CAO?若存在,求點(diǎn)F的坐標(biāo);不存在,說明理由;
(4)將拋物線沿y軸方向平移m個單位后,頂點(diǎn)為Q,若QO平分∠CQN,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com