【題目】如圖,∠AOB內(nèi)一點(diǎn)P,P1 , P2分別是P關(guān)于OA、OB的對稱點(diǎn),P1P2交OA于點(diǎn)M,交OB于點(diǎn)N.若△PMN的周長是5cm,則P1P2的長為( )
A.3cm
B.4cm
C.5cm
D.6cm
【答案】C
【解析】解:∵P點(diǎn)關(guān)于OA、OB的對稱點(diǎn)P1、P2 ,
∴PM=P1M,PN=P2N,
∴△PMN的周長=PM+MN+PN=P1M+MN+P2N=P1P2 ,
∵△PMN的周長是5cm,
∴P1P2=5cm.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解軸對稱的性質(zhì)的相關(guān)知識,掌握關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=2x2﹣1,先向上平移2個單位,再向右平移1個單位后其頂點(diǎn)坐標(biāo)是( )
A.(2,1)
B.(1,2)
C.(1,﹣1)
D.(1,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠BCD的平分線交AD于點(diǎn)F.
(1)求證:四邊形AECF是平行四邊形;
(2)若AE=5,BC﹣AB=3,求四邊形AECF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段MN=8cm,點(diǎn)P為直線MN上的點(diǎn),且點(diǎn)P到N的距離為2cm,則線段PM=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x 2 +3=2x的根的情況為( )
A. 沒有實(shí)數(shù)根
B. 有兩個相等的實(shí)數(shù)根
C. 有一個實(shí)數(shù)根
D. 有兩個不相等的實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ =θ, ,我們將這種變換記為[θ,n] .
(1)如圖①,對△ABC作變換[60°,]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)按從小到大排列為2,4,8,x,10,14.若這組數(shù)據(jù)的中位數(shù)為9,則x是( 。
A. 6B. 8C. 9D. 10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com